bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2024–06–30
sixty-five papers selected by
Catalina Vasilescu, Helmholz Munich



  1. bioRxiv. 2024 Jun 10. pii: 2024.06.10.598126. [Epub ahead of print]
      Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically-diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) - comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI - is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic, stress-independent activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic, stress-independent activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that stress-independent activation of these ISR kinases reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic, stress-independent activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.
    DOI:  https://doi.org/10.1101/2024.06.10.598126
  2. Expert Opin Biol Ther. 2024 Jun;24(6): 521-528
       INTRODUCTION: Leber hereditary optic neuropathy (LHON) is among the most frequent inherited mitochondrial disease, causing a severe visual impairment, mostly in young-adult males. The causative mtDNA variants (the three common are m.11778 G>A/MT-ND4, m.3460 G>A/MT-ND1, and m.14484T>C/MT-ND6) by affecting complex I impair oxidative phosphorylation in retinal ganglion cells, ultimately leading to irreversible cell death and consequent functional loss. The gene therapy based on allotopic expression of a wild-type transgene carried by adeno-associated viral vectors (AVV-based) appears a promising approach in mitochondrial disease and its efficacy has been explored in several large clinical trials.
    AREAS COVERED: The review work employed basic concepts in mitochondrial diseases, LHON, and gene therapy procedures. Reports from completed trials in LHON (i.e. RESCUE) were reviewed and critically compared.
    EXPERT OPINION: New challenges, as the improvement of the contralateral untreated eye or the apparently better outcome in patients treated in later stages (6-12 months), were highlighted by the latest gene therapy trials. A better understanding of the pathogenetic mechanisms of the disease together with combined therapy (medical and gene therapy) and optimization in genetic correction approaches could improve the visual outcome of treated eyes.
    Keywords:  Leber hereditary optic neuropathy; allotopic expression; gene therapy; mitochondria; viral vector
    DOI:  https://doi.org/10.1080/14712598.2024.2359015
  3. Int J Mol Sci. 2024 Jun 11. pii: 6441. [Epub ahead of print]25(12):
      Mitochondrial quality control is essential in mitochondrial function. To examine the importance of Parkin-dependent mechanisms in mitochondrial quality control, we assessed the impact of modulating Parkin on proteome flux and mitochondrial function in a context of reduced mtDNA fidelity. To accomplish this, we crossed either the Parkin knockout mouse or ParkinW402A knock-in mouse lines to the Polg mitochondrial mutator line to generate homozygous double mutants. In vivo longitudinal isotopic metabolic labeling was followed by isolation of liver mitochondria and synaptic terminals from the brain, which are rich in mitochondria. Mass spectrometry and bioenergetics analysis were assessed. We demonstrate that slower mitochondrial protein turnover is associated with loss of mtDNA fidelity in liver mitochondria but not synaptic terminals, and bioenergetic function in both tissues is impaired. Pathway analysis revealed loss of mtDNA fidelity is associated with disturbances of key metabolic pathways, consistent with its association with metabolic disorders and neurodegeneration. Furthermore, we find that loss of Parkin leads to exacerbation of Polg-driven proteomic consequences, though it may be bioenergetically protective in tissues exhibiting rapid mitochondrial turnover. Finally, we provide evidence that, surprisingly, dis-autoinhibition of Parkin (ParkinW402A) functionally resembles Parkin knockout and fails to rescue deleterious Polg-driven effects. Our study accomplishes three main outcomes: (1) it supports recent studies suggesting that Parkin dependence is low in response to an increased mtDNA mutational load, (2) it provides evidence of a potential protective role of Parkin insufficiency, and (3) it draws into question the therapeutic attractiveness of enhancing Parkin function.
    Keywords:  Parkin; Parkinson’s disease; aging; metabolism; mitochondria; mitophagy
    DOI:  https://doi.org/10.3390/ijms25126441
  4. RNA Biol. 2024 Jan;21(1): 23-30
      Ribosomes are large macromolecular complexes composed of both proteins and RNA, that require a plethora of factors and post-transcriptional modifications for their biogenesis. In human mitochondria, the ribosomal RNA is post-transcriptionally modified at ten sites. The N4-methylcytidine (m4C) methyltransferase, METTL15, modifies the 12S rRNA of the small subunit at position C1486. The enzyme is essential for mitochondrial protein synthesis and assembly of the mitoribosome small subunit, as shown here and by previous studies. Here, we demonstrate that the m4C modification is not required for small subunit biogenesis, indicating that the chaperone-like activity of the METTL15 protein itself is an essential component for mitoribosome biogenesis.
    Keywords:  Mitochondrial ribosome; chaperone; epitranscriptomics; methyltransferase; mitochondria; ribosomal RNA
    DOI:  https://doi.org/10.1080/15476286.2024.2369374
  5. Int J Mol Sci. 2024 Jun 20. pii: 6765. [Epub ahead of print]25(12):
      Coenzyme Q10 (CoQ10) plays a key role in many aspects of cellular metabolism. For CoQ10 to function normally, continual interconversion between its oxidised (ubiquinone) and reduced (ubiquinol) forms is required. Given the central importance of this ubiquinone-ubiquinol redox cycle, this article reviews what is currently known about this process and the implications for clinical practice. In mitochondria, ubiquinone is reduced to ubiquinol by Complex I or II, Complex III (the Q cycle) re-oxidises ubiquinol to ubiquinone, and extra-mitochondrial oxidoreductase enzymes participate in the ubiquinone-ubiquinol redox cycle. In clinical terms, the outcome of deficiencies in various components associated with the ubiquinone-ubiquinol redox cycle is reviewed, with a particular focus on the potential clinical benefits of CoQ10 and selenium co-supplementation.
    Keywords:  Q cycle; coenzyme Q10; oxidoreductases; selenium; ubiquinol; ubiquinone
    DOI:  https://doi.org/10.3390/ijms25126765
  6. Med Rev (2021). 2024 Jun;4(3): 239-243
      Investigating the fine structure of mitochondria and their dynamic interactions with other organelles is crucial for unraveling the mechanisms underlying mitochondrial-related diseases. The development of super-resolution techniques has provided powerful visualization tools for mitochondrial research, which is significant for investigating mitochondrial cristae structure, the localization of mitochondrial-related protein complex, and the interactions between mitochondria and other organelles. In this perspective, we introduce several advanced super-resolution techniques and their applications in mitochondrial research, and discuss the potential roles these techniques may play in future studies of mitochondria.
    Keywords:  fluorescence microscopy; mitochondria; super resolution microscopy
    DOI:  https://doi.org/10.1515/mr-2024-0021
  7. Sci Rep. 2024 06 26. 14(1): 14784
      The complex architecture and biochemistry of the inner mitochondrial membrane generate ultra-structures with different phospholipid and protein compositions, shapes, characteristics, and functions. The crista junction (CJ) serves as an important barrier separating the cristae (CM) and inner boundary membranes (IBM). Thereby CJ regulates the movement of ions and ensures distinct electrical potentials across the cristae (ΔΨC) and inner boundary (ΔΨIBM) membranes. We have developed a robust and flexible approach to visualize the CJ permeability with super-resolution microscopy as a readout of local mitochondrial membrane potential (ΔΨmito) fluctuations. This method involves analyzing the distribution of TMRM fluorescence intensity in a model that is restricted to the mitochondrial geometry. We show that mitochondrial Ca2+ elevation hyperpolarizes the CM most likely caused by Ca2+ sensitive increase of mitochondrial tricarboxylic acid cycle (TCA) and subsequent oxidative phosphorylation (OXPHOS) activity in the cristae. Dynamic multi-parameter correlation measurements of spatial mitochondrial membrane potential gradients, ATP levels, and mitochondrial morphometrics revealed a CJ-based membrane potential overflow valve mechanism protecting the mitochondrial integrity during excessive cristae hyperpolarization.
    Keywords:  Correlative microscopy; Cristae junctions; Membrane potential gradient; Mitochondria; Mitochondrial membranes
    DOI:  https://doi.org/10.1038/s41598-024-65595-z
  8. Genes (Basel). 2024 May 27. pii: 694. [Epub ahead of print]15(6):
      LONP1 is the principal AAA+ unfoldase and bulk protease in the mitochondrial matrix, so its deletion causes embryonic lethality. The AAA+ unfoldase CLPX and the peptidase CLPP also act in the matrix, especially during stress periods, but their substrates are poorly defined. Mammalian CLPP deletion triggers infertility, deafness, growth retardation, and cGAS-STING-activated cytosolic innate immunity. CLPX mutations impair heme biosynthesis and heavy metal homeostasis. CLPP and CLPX are conserved from bacteria to humans, despite their secondary role in proteolysis. Based on recent proteomic-metabolomic evidence from knockout mice and patient cells, we propose that CLPP acts on phase-separated ribonucleoprotein granules and CLPX on multi-enzyme condensates as first-aid systems near the inner mitochondrial membrane. Trimming within assemblies, CLPP rescues stalled processes in mitoribosomes, mitochondrial RNA granules and nucleoids, and the D-foci-mediated degradation of toxic double-stranded mtRNA/mtDNA. Unfolding multi-enzyme condensates, CLPX maximizes PLP-dependent delta-transamination and rescues malformed nascent peptides. Overall, their actions occur in granules with multivalent or hydrophobic interactions, separated from the aqueous phase. Thus, the role of CLPXP in the matrix is compartment-selective, as other mitochondrial peptidases: MPPs at precursor import pores, m-AAA and i-AAA at either IMM face, PARL within the IMM, and OMA1/HTRA2 in the intermembrane space.
    Keywords:  ALAS; GFM1; ISC; OAT; PNPT1; Perrault syndrome type 3 (PRLTS3); RNA-G4; VWA8; iron toxicity; pyridoxal-5′-phosphate
    DOI:  https://doi.org/10.3390/genes15060694
  9. J Extracell Biol. 2022 Oct;1(10): e65
      Mitochondrial and autophagy dysfunction are mechanisms proposed to be involved in the pathogenesis of several neurodegenerative diseases. Huntington's disease (HD) is a progressive neurodegenerative disorder associated with mutant Huntingtin-induced abnormalities in neuronal mitochondrial dynamics and quality control. Former studies suggest that the removal of defective mitochondria may be compromised in HD. Mitochondrial quality control (MQC) is a complex, well-orchestrated pathway that can be compromised through mitophagy dysregulation or impairment in the mitochondria-lysosomal axis. Another mitochondrial stress response is the generation of mitochondrial-derived vesicles that fuse with the endolysosomal system and form multivesicular bodies that are extruded from cells as extracellular vesicles (EVs). In this work, we aimed to study the presence of mitochondrial components in human EVs and the relation to the dysfunction of both mitochondria and the autophagy pathway. We comprehensively characterized the mitochondrial and autophagy alterations in premanifest and manifest HD carriers and performed a proteomic and genomic EVs profile. We observed that manifest HD patients exhibit mitochondrial and autophagy impairment associated with enhanced EVs release. Furthermore, we detected mitochondrial DNA and proteins in EVs released by HD cells and in neuronal-derived EVs including VDAC-1 and alpha and beta subunits of ATP synthase F1. HD-extracellular vesicles transport higher levels of mitochondrial genetic material in manifest HD patients, suggesting an alternative pathway for the secretion of reactive mitochondrial components. This study provides a novel framework connecting EVs enhanced release of mitochondrial components to mitochondrial and lysosomal dysfunction in HD.
    Keywords:  Huntington's disease; autophagy; extracellular vesicles; mitochondrial DNA; mitochondrial dysfunction; neuronal‐derived extracellular vesicles
    DOI:  https://doi.org/10.1002/jex2.65
  10. Int J Mol Sci. 2024 Jun 07. pii: 6302. [Epub ahead of print]25(12):
      Mitochondrial one-carbon metabolism provides carbon units to several pathways, including nucleic acid synthesis, mitochondrial metabolism, amino acid metabolism, and methylation reactions. Late-onset Alzheimer's disease is the most common age-related neurodegenerative disease, characterised by impaired energy metabolism, and is potentially linked to mitochondrial bioenergetics. Here, we discuss the intersection between the molecular pathways linked to both mitochondrial one-carbon metabolism and Alzheimer's disease. We propose that enhancing one-carbon metabolism could promote the metabolic processes that help brain cells cope with Alzheimer's disease-related injuries. We also highlight potential therapeutic avenues to leverage one-carbon metabolism to delay Alzheimer's disease pathology.
    Keywords:  Alzheimer’s disease; folate; mitochondria; one-carbon metabolism
    DOI:  https://doi.org/10.3390/ijms25126302
  11. Anal Chem. 2024 Jun 26.
      Mitochondrial cristae, invaginations of the inner mitochondrial membrane (IMM) into the matrix, are the main site for the generation of ATP via oxidative phosphorylation, and mitochondrial membrane potential (MMP). Synchronous study of the dynamic relationship between cristae and MMP is very important for further understanding of mitochondrial function. Due to the lack of suitable IMM probes and imaging techniques, the dynamic relationship between MMP and cristae structure alterations remains poorly understood. We designed a pair of FRET-based molecular probes, with the donor (OR-LA) being rhodamine modified with mitochondrial coenzyme lipoic acid and the acceptor (SiR-BA) being silicon-rhodamine modified with a butyl chain, for simultaneous dynamic monitoring of mitochondrial cristae structure and MMP. The FRET process of the molecular pair in mitochondria is regulated by MMP, enabling more precise visualization of MMP through fluorescence intensity ratio and fluorescence lifetime. By combining FRET with FLIM super-resolution imaging technology, we achieved simultaneous dynamic monitoring of mitochondrial cristae structure and MMP, revealing that during the decline of MMP, there is a progression involving cristae dilation, fragmentation, mitochondrial vacuolization, and eventual rupture. Significantly, we successfully observed that the rapid decrease in MMP at the site of mitochondrial membrane rupture may be a critical factor in mitochondrial fragmentation. These data collectively reveal the dynamic relationship between cristae structural alterations and MMP decline, laying a foundation for further investigation into cellular energy regulation mechanisms and therapeutic strategies for mitochondria-related diseases.
    DOI:  https://doi.org/10.1021/acs.analchem.4c01905
  12. EMBO J. 2024 Jun 27.
      Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously. Some studies, in contrast, have provided evidence indicating that the mitochondrial ADP/ATP carrier (SLC25A4) functions as a monomer, has a single substrate binding site, and operates with a ping-pong kinetic mechanism, whereby ADP is imported before ATP is exported. Here we reanalyze the oligomeric state and kinetic properties of the human mitochondrial citrate carrier (SLC25A1), dicarboxylate carrier (SLC25A10), oxoglutarate carrier (SLC25A11), and aspartate/glutamate carrier (SLC25A13), all previously reported to be dimers with a sequential kinetic mechanism. We demonstrate that they are monomers, except for dimeric SLC25A13, and operate with a ping-pong kinetic mechanism in which the substrate import and export steps occur consecutively. These observations are consistent with a common transport mechanism, based on a functional monomer, in which a single central substrate-binding site is alternately accessible.
    Keywords:  Bioenergetics; Kinetic Analysis; Mitochondria; SLC25 Mitochondrial Carrier Family; Transport
    DOI:  https://doi.org/10.1038/s44318-024-00150-0
  13. JCI Insight. 2024 Jun 25. pii: e180582. [Epub ahead of print]
      Autosomal dominant optic atrophy plus (ADOA+) is characterized by primary optic nerve atrophy accompanied by a spectrum of degenerative neurological symptoms. Despite ongoing research, no effective treatments are currently available for this condition. Our study provided evidence for the pathogenicity of an unreported c.1780T>C variant in the OPA1 gene through patient-derived skin fibroblasts and an engineered HEK293T cell line with OPA1 downregulation. We demonstrated that OPA1 insufficiency promoted mitochondrial fragmentation and increased DRP1 expression, disrupting mitochondrial dynamics. Consequently, this disruption enhanced mitophagy and caused mitochondrial dysfunction, contributing to the ADOA+ phenotype. Notably, the Drp1 inhibitor, mitochondrial division inhibitor-1 (Mdivi-1), effectively mitigated the adverse effects of OPA1 impairment. These effects included reduced Drp1 phosphorylation, decreased mitochondrial fragmentation, and balanced mitophagy. Thus, we propose that intervening in DRP1 with Mdivi-1 could correct mitochondrial abnormalities, offering a promising therapeutic approach for managing ADOA+.
    Keywords:  Autophagy; Drug therapy; Mitochondria; Neuroscience; Ophthalmology
    DOI:  https://doi.org/10.1172/jci.insight.180582
  14. Biol Open. 2024 Jun 24. pii: bio.060335. [Epub ahead of print]
      Changes in mitochondrial distribution are a feature of numerous age-related neurodegenerative diseases. In Drosophila, reducing the activity of Cdk5 causes a neurodegenerative phenotype and is known to affect several mitochondrial properties. Therefore, we investigated whether alterations of mitochondrial distribution are involved in Cdk5-associated neurodegeneration. We find that reducing Cdk5 activity does not alter the balance of mitochondrial localization to the somatodendritic vs. axonal neuronal compartments of the mushroom body, the learning and memory center of the Drosophila brain. We do, however, observe changes in mitochondrial distribution at the axon initial segment (AIS), a neuronal compartment located in the proximal axon involved in neuronal polarization and action potential initiation. Specifically, we observe that mitochondria are partially excluded from the AIS in wild-type neurons, but that this exclusion is lost upon reduction of Cdk5 activity, concomitant with the shrinkage of the AIS domain that is known to occur in this condition. This mitochondrial redistribution into the AIS is not likely due to the shortening of the AIS domain itself but rather due to altered Cdk5 activity. Furthermore, mitochondrial redistribution into the AIS is unlikely to be an early driver of neurodegeneration in the context of reduced Cdk5 activity.
    Keywords:  Axon initial segment; Cdk5; Mitochondria; Mitochondrial distribution; Neurodegeneration
    DOI:  https://doi.org/10.1242/bio.060335
  15. Biochem Biophys Res Commun. 2024 Jun 19. pii: S0006-291X(24)00805-2. [Epub ahead of print]726 150269
      Mitochondrial dysfunction is implicated in a wide range of human disorders including many neurodegenerative and cardiovascular diseases, metabolic diseases, cancers, and respiratory disorders. Studies have suggested the potential of l-ergothioneine (ET), a unique dietary thione, to prevent mitochondrial damage and improve disease outcome. Despite this, no studies have definitively demonstrated uptake of ET into mitochondria. Moreover, the expression of the known ET transporter, OCTN1, on the mitochondria remains controversial. In this study, we utilise mass spectrometry to demonstrate direct ET uptake in isolated mitochondria as well as its presence in mitochondria isolated from ET-treated cells and animals. Mitochondria isolated from OCTN1 knockout mice tissues, have impaired but still detectable ET uptake, raising the possibility of alternative transporter(s) which may facilitate ET uptake into the mitochondria. Our data confirm that ET can enter mitochondria, providing a basis for further work on ET in the prevention of mitochondrial dysfunction in human disease.
    Keywords:  Antioxidant; Ergothioneine; Mitochondria; OCTN1; Subcellular localisation; Transporter
    DOI:  https://doi.org/10.1016/j.bbrc.2024.150269
  16. Antioxidants (Basel). 2024 Jun 19. pii: 743. [Epub ahead of print]13(6):
      Oxidative stress is a key factor causing mitochondrial dysfunction and retinal ganglion cell (RGC) death in glaucomatous neurodegeneration. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway is involved in mitochondrial protection, promoting RGC survival. Soluble adenylyl cyclase (sAC) is a key regulator of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway, which is known to protect mitochondria and promote RGC survival. However, the precise molecular mechanisms connecting the sAC-mediated signaling pathway with mitochondrial protection in RGCs against oxidative stress are not well characterized. Here, we demonstrate that sAC plays a critical role in protecting RGC mitochondria from oxidative stress. Using mouse models of oxidative stress induced by ischemic injury and paraquat administration, we found that administration of bicarbonate, as an activator of sAC, protected RGCs, blocked AMP-activated protein kinase activation, inhibited glial activation, and improved visual function. Moreover, we found that this is the result of preserving mitochondrial dynamics (fusion and fission), promoting mitochondrial bioenergetics and biogenesis, and preventing metabolic stress and apoptotic cell death. Notably, the administration of bicarbonate ameliorated mitochondrial dysfunction in RGCs by enhancing mitochondrial biogenesis, preserving mitochondrial structure, and increasing ATP production in oxidatively stressed RGCs. These findings suggest that activating sAC enhances the mitochondrial structure and function in RGCs to counter oxidative stress, consequently promoting RGC protection. We propose that modulation of the sAC-mediated signaling pathway has therapeutic potential acting on RGC mitochondria for treating glaucoma and other retinal diseases.
    Keywords:  glaucoma; mitochondria; oxidative stress; retinal ganglion cells (RGCs); soluble adenylyl cyclase (sAC)
    DOI:  https://doi.org/10.3390/antiox13060743
  17. Nat Commun. 2024 Jun 27. 15(1): 5446
      Mitochondrial transcription factor A (TFAM) employs DNA bending to package mitochondrial DNA (mtDNA) into nucleoids and recruit mitochondrial RNA polymerase (POLRMT) at specific promoter sites, light strand promoter (LSP) and heavy strand promoter (HSP). Herein, we characterize the conformational dynamics of TFAM on promoter and non-promoter sequences using single-molecule fluorescence resonance energy transfer (smFRET) and single-molecule protein-induced fluorescence enhancement (smPIFE) methods. The DNA-TFAM complexes dynamically transition between partially and fully bent DNA conformational states. The bending/unbending transition rates and bending stability are DNA sequence-dependent-LSP forms the most stable fully bent complex and the non-specific sequence the least, which correlates with the lifetimes and affinities of TFAM with these DNA sequences. By quantifying the dynamic nature of the DNA-TFAM complexes, our study provides insights into how TFAM acts as a multifunctional protein through the DNA bending states to achieve sequence specificity and fidelity in mitochondrial transcription while performing mtDNA packaging.
    DOI:  https://doi.org/10.1038/s41467-024-49728-6
  18. Biomedicines. 2024 Jun 13. pii: 1307. [Epub ahead of print]12(6):
      UCP2 is an uncoupling protein homolog to UCP1. Unlike UCP1, which participates in non-shivering thermogenesis by uncoupling oxidative phosphorylation (OXPHOS), UCP2 does not perform a canonical H+ leak, consuming the protonmotive force (Δp) through the inner mitochondrial membrane. The UCP2 biological role is elusive. It can counteract oxidative stress, acting with a "mild uncoupling" process to reduce ROS production, and, in fact, UCP2 activities are related to inflammatory processes, triggering pathological conditions. However, the Δp dissipation by UCP2 activity reduces the mitochondrial ATP production and rewires the bioenergetic metabolism of the cells. In all likelihood, UCP2 works as a carrier of metabolites with four carbon atoms (C4), reversing the anaerobic glycolysis-dependent catabolism to OXPHOS. Indeed, UCP2 can perform catalysis in dual mode: mild uncoupling of OXPHOS and metabolite C4 exchange of mitochondria. In vivo, the UCP2 features in the biology of mitochondria promote healthy ageing, increased lifespan, and can assure cerebro- and cardiovascular protection. However, the pathological conditions responsible for insulin secretion suppression are dependent on UCP2 activity. On balance, the uncertain biochemical mechanisms dependent on UCP2 do not allow us to depict the protective role in mitochondrial bioenergetics.
    Keywords:  H+ leak; UCP2; bioenergetics; cardiovascular diseases; mitochondria; oxidative phosphorylation
    DOI:  https://doi.org/10.3390/biomedicines12061307
  19. Cell Death Dis. 2024 Jun 28. 15(6): 462
      S100a8/a9, largely released by polymorphonuclear neutrophils (PMNs), belongs to the S100 family of calcium-binding proteins and plays a role in a variety of inflammatory diseases. Although S100a8/a9 has been reported to trigger endothelial cell apoptosis, the mechanisms of S100a8/a9-induced endothelial dysfunction during sepsis require in-depth research. We demonstrate that high expression levels of S100a8/a9 suppress Ndufa3 expression in mitochondrial complex I via downregulation of Nrf1 expression. Mitochondrial complex I deficiency contributes to NAD+-dependent Sirt1 suppression, which induces mitochondrial disorders, including excessive fission and blocked mitophagy, and mtDNA released from damaged mitochondria ultimately activates ZBP1-mediated PANoptosis in endothelial cells. Moreover, based on comprehensive scRNA-seq and bulk RNA-seq analyses, S100A8/A9hi neutrophils are closely associated with the circulating endothelial cell count (a useful marker of endothelial damage), and S100A8 is an independent risk factor for poor prognosis in sepsis patients.
    DOI:  https://doi.org/10.1038/s41419-024-06849-6
  20. Int J Mol Sci. 2024 Jun 12. pii: 6498. [Epub ahead of print]25(12):
      There is a "popular" belief that a fat-free diet is beneficial, supported by the scientific dogma indicating that high levels of fatty acids promote many pathological metabolic, cardiovascular, and neurodegenerative conditions. This dogma pressured scientists not to recognize the essential role of fatty acids in cellular metabolism and focus on the detrimental effects of fatty acids. In this work, we critically review several decades of studies and recent publications supporting the critical role of mitochondrial fatty acid metabolism in cellular homeostasis and many pathological conditions. Fatty acids are the primary fuel source and essential cell membrane building blocks from the origin of life. The essential cell membranes phospholipids were evolutionarily preserved from the earlier bacteria in human subjects. In the past century, the discovery of fatty acid metabolism was superseded by the epidemic growth of metabolic conditions and cardiovascular diseases. The association of fatty acids and pathological conditions is not due to their "harmful" effects but rather the result of impaired fatty acid metabolism and abnormal lifestyle. Mitochondrial dysfunction is linked to impaired metabolism and drives multiple pathological conditions. Despite metabolic flexibility, the loss of mitochondrial fatty acid oxidation cannot be fully compensated for by other sources of mitochondrial substrates, such as carbohydrates and amino acids, resulting in a pathogenic accumulation of long-chain fatty acids and a deficiency of medium-chain fatty acids. Despite popular belief, mitochondrial fatty acid oxidation is essential not only for energy-demanding organs such as the heart, skeletal muscle, and kidneys but also for metabolically "inactive" organs such as endothelial and epithelial cells. Recent studies indicate that the accumulation of long-chain fatty acids in specific organs and tissues support the impaired fatty acid oxidation in cell- and tissue-specific fashion. This work, therefore, provides a basis to challenge these established dogmas and articulate the need for a paradigm shift from the "pathogenic" role of fatty acids to the critical role of fatty acid oxidation. This is important to define the causative role of impaired mitochondrial fatty acid oxidation in specific pathological conditions and develop novel therapeutic approaches targeting mitochondrial fatty acid metabolism.
    Keywords:  fatty acid metabolism; mitochondria; pathological conditions; respiration
    DOI:  https://doi.org/10.3390/ijms25126498
  21. Dis Model Mech. 2024 Jun 01. pii: dmm050573. [Epub ahead of print]17(6):
      Interpreting the wealth of rare genetic variants discovered in population-scale sequencing efforts and deciphering their associations with human health and disease present a critical challenge due to the lack of sufficient clinical case reports. One promising avenue to overcome this problem is deep mutational scanning (DMS), a method of introducing and evaluating large-scale genetic variants in model cell lines. DMS allows unbiased investigation of variants, including those that are not found in clinical reports, thus improving rare disease diagnostics. Currently, the main obstacle limiting the full potential of DMS is the availability of functional assays that are specific to disease mechanisms. Thus, we explore high-throughput functional methodologies suitable to examine broad disease mechanisms. We specifically focus on methods that do not require robotics or automation but instead use well-designed molecular tools to transform biological mechanisms into easily detectable signals, such as cell survival rate, fluorescence or drug resistance. Here, we aim to bridge the gap between disease-relevant assays and their integration into the DMS framework.
    Keywords:  Deep mutational scanning; High-throughput functional assays; Variant interpretation
    DOI:  https://doi.org/10.1242/dmm.050573
  22. J Assoc Res Otolaryngol. 2024 Jun 27.
      To enable nervous system function, neurons are powered in a use-dependent manner by mitochondria undergoing morphological-functional adaptation. In a well-studied model system-the mammalian cochlea, auditory nerve fibers (ANFs) display distinct electrophysiological properties, which is essential for collectively sampling acoustic information of a large dynamic range. How exactly the associated mitochondrial networks are deployed in functionally differentiated ANFs remains scarcely interrogated. Here, we leverage volume electron microscopy and machine-learning-assisted image analysis to phenotype mitochondrial morphology and distribution along ANFs of full-length in the mouse cochlea inner spiral bundle. This reveals greater variance in mitochondrial size with increased ANF habenula to terminal path length. Particularly, we analyzed the ANF terminal-residing mitochondria, which are critical for local calcium uptake during sustained afferent activities. Our results suggest that terminal-specific enrichment of mitochondria, in addition to terminal size and overall mitochondrial abundance of the ANF, correlates with heterogenous mitochondrial contents of the terminal.
    Keywords:  Auditory nerve fiber; Mitochondrion; Mouse cochlea; Volume electron microscopy
    DOI:  https://doi.org/10.1007/s10162-024-00957-y
  23. bioRxiv. 2024 Jun 12. pii: 2024.06.09.598108. [Epub ahead of print]
      The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health.
    Translational Statement: Due to aging, the efficiency of kidney functions begins to decrease and the risk of kidney diseases may increase, but specific regulators of mitochondrial age-related changes are poorly explained. This study demonstrates the MICOS complex may be a target for mitigating age-related changes in mitochondria. The MICOS complex can be associated with oxidative stress and calcium dysregulation, which also arise in many kidney pathologies.
    DOI:  https://doi.org/10.1101/2024.06.09.598108
  24. J Physiol. 2024 Jun 26.
      Murine models lacking CLOCK/BMAL1 proteins in skeletal muscle (SkM) present muscle deterioration and mitochondria abnormalities. It is unclear whether humans with lower levels of these proteins in the SkM have similar alterations. Here we evaluated the association between BMAL1 and CLOCK protein mass with mitochondrial dynamics parameters and molecular and functional SkM quality markers in males. SkM biopsies were taken from the vastus lateralis of 16 male (non-athletes, non-obese and non-diabetic) subjects (8-9 a.m.). The morphology of mitochondria and their interaction with the sarcoplasmic reticulum (mitochondria-SR) were determined using transmission electron microscopy images. Additionally, protein abundance of the OXPHOS complex, mitochondria fusion/fission regulators, mitophagy and signalling proteins related to muscle protein synthesis were measured. To evaluate the quality of SkM, the cross-sectional area and maximal SkM strength were also measured. The results showed that BMAL1 protein mass was positively associated with mitochondria-SR distance, mitochondria size, mitochondria cristae density and mTOR protein mass. On the other hand, CLOCK protein mass was negatively associated with mitochondria-SR interaction, but positively associated with mitochondria complex III, OPA1 and DRP1 protein mass. Furthermore, CLOCK protein mass was positively associated with the protein synthesis signalling pathway (total mTOR, AKT and P70S6K protein mass) and SkM strength. These findings suggest that the BMAL1 and CLOCK proteins play different roles in regulating mitochondrial dynamics and SkM function in males, and that modulation of these proteins could be a potential therapeutic target for treating muscle diseases. KEY POINTS: In murine models, reductions in BMAL1 and CLOCK proteins lead to changes in mitochondria biology and a decline in muscle function. However, this association has not been explored in humans. We found that in human skeletal muscle, a decrease in BMAL1 protein mass is linked to smaller intermyofibrillar mitochondria, lower mitochondria cristae density, higher interaction between mitochondria and sarcoplasmic reticulum, and reduced mTOR protein mass. Additionally, we found that a decrease in CLOCK protein mass is associated with a higher interaction between mitochondria and sarcoplasmic reticulum, lower protein mass of OPA1 and DRP1, which regulates mitochondria fusion and fission, lower protein synthesis signalling pathway (mTOR, AKT and P70S6K protein mass), and decreased skeletal muscle strength. According to our findings in humans, which are supported by previous studies in animals, the mitochondrial dynamics and skeletal muscle function could be regulated differently by BMAL1 and CLOCK proteins. As a result, targeting the modulation of these proteins could be a potential therapeutic approach for treating muscle diseases and metabolic disorders related to muscle.
    Keywords:  circadian clock; mitochondria cristae density; mitochondria fusion and fission; mitochondria–sarcoplasmic reticulum interaction; mitophagy; muscle strength
    DOI:  https://doi.org/10.1113/JP285955
  25. Obes Rev. 2024 Jun 24. e13794
      Human skeletal muscle mitochondria regulate energy expenditure. Research has shown that the functionality of muscle mitochondria is altered in subjects with overweight, as well as in response to nutrient excess and calorie restriction. Two metabolic features of obesity and overweight are (1) incomplete muscular fatty acid oxidation and (2) increased circulating lactate levels. In this study, I propose that these metabolic disturbances may originate from a common source within the muscle mitochondrial electron transport system. Specifically, a reorganization of the supramolecular structure of the electron transport chain could facilitate the maintenance of readily accessible coenzyme Q pools, which are essential for metabolizing lipid substrates. This approach is expected to maintain effective electron transfer, provided that there is sufficient complex III to support the Q-cycle. Such an adaptation could enhance fatty acid oxidation and prevent mitochondrial overload, thereby reducing lactate production. These insights advance our understanding of the molecular mechanisms underpinning metabolic dysregulation in overweight states. This provides a basis for targeted interventions in the quest for metabolic health.
    Keywords:  coenzyme Q; electron transport chain; metabolism; obesity; respiratory supercomplexes; skeletal muscle
    DOI:  https://doi.org/10.1111/obr.13794
  26. FEBS Lett. 2024 Jun 25.
      Mitochondrial NADH-ubiquinone oxidoreductase (complex I) couples electron transfer from NADH to ubiquinone with proton translocation in its membrane part. Structural studies have identified a long (~ 30 Å), narrow, tunnel-like cavity within the enzyme, through which ubiquinone may access a deep reaction site. Although various inhibitors are considered to block the ubiquinone reduction by occupying the tunnel's interior, this view is still debatable. We synthesized a phosphatidylcholine-quinazoline hybrid compound (PC-Qz1), in which a quinazoline-type toxophore was attached to the sn-2 acyl chain to prevent it from entering the tunnel. However, PC-Qz1 inhibited complex I and suppressed photoaffinity labeling by another quinazoline derivative, [125I]AzQ. This study provides further experimental evidence that is difficult to reconcile with the canonical ubiquinone-accessing tunnel model.
    Keywords:  complex I; inhibitor; mitochondria; proteoliposomes; respiratory enzymes; ubiquinone
    DOI:  https://doi.org/10.1002/1873-3468.14967
  27. Biology (Basel). 2024 May 29. pii: 394. [Epub ahead of print]13(6):
      Mitochondria, essential organelles orchestrating cellular metabolism, have emerged as central players in various disease pathologies. Recent research has shed light on mitohormesis, a concept proposing an adaptive response of mitochondria to minor disturbances in homeostasis, offering novel therapeutic avenues for mitochondria-related diseases. This comprehensive review explores the concept of mitohormesis, elucidating its induction mechanisms and occurrence. Intracellular molecules like reactive oxygen species (ROS), calcium, mitochondrial unfolded proteins (UPRmt), and integrated stress response (ISR), along with external factors such as hydrogen sulfide (H2S), physical stimuli, and exercise, play pivotal roles in regulating mitohormesis. Based on the available evidence, we elucidate how mitohormesis maintains mitochondrial homeostasis through mechanisms like mitochondrial quality control and mitophagy. Furthermore, the regulatory role of mitohormesis in mitochondria-related diseases is discussed. By envisioning future applications, this review underscores the significance of mitohormesis as a potential therapeutic target, paving the way for innovative interventions in disease management.
    Keywords:  cellular metabolism; mitochondrial dysfunction; mitohormesis; reactive oxygen species
    DOI:  https://doi.org/10.3390/biology13060394
  28. J Vis Exp. 2024 Jun 07.
      Baker´s yeast Saccharomyces cerevisiae has been widely used to understand mitochondrial biology for decades. This model has provided knowledge about essential, conserved mitochondrial pathways among eukaryotes, and fungi or yeast-specific pathways. One of the many abilities of S. cerevisiae is the capacity to manipulate the mitochondrial genome, which so far is only possible in S. cerevisiae and the unicellular algae Chlamydomonas reinhardtii. The biolistic transformation of yeast mitochondria allows us to introduce site-directed mutations, make gene rearrangements, and introduce reporters. These approaches are mainly used to understand the mechanisms of two highly coordinated processes in mitochondria: translation by mitoribosomes and assembly of respiratory complexes and ATP synthase. However, mitochondrial transformation can potentially be used to study other pathways. In the present work, we show how to transform yeast mitochondria by high-velocity microprojectile bombardment, select and purify the intended transformant, and introduce the desired mutation in the mitochondrial genome.
    DOI:  https://doi.org/10.3791/66856
  29. bioRxiv. 2024 Jun 19. pii: 2024.06.13.598906. [Epub ahead of print]
       Background: Mitochondrial (mt) heteroplasmy can cause adverse biological consequences when deleterious mtDNA mutations accumulate disrupting 'normal' mt-driven processes and cellular functions. To investigate the heteroplasmy of such mtDNA changes we developed a moderate throughput mt isolation procedure to quantify the mt single-nucleotide variant (SNV) landscape in individual mouse neurons and astrocytes In this study we amplified mt-genomes from 1,645 single mitochondria (mts) isolated from mouse single astrocytes and neurons to 1. determine the distribution and proportion of mt-SNVs as well as mutation pattern in specific target regions across the mt-genome, 2. assess differences in mtDNA SNVs between neurons and astrocytes, and 3. Study cosegregation of variants in the mouse mtDNA.
    Results: 1. The data show that specific sites of the mt-genome are permissive to SNV presentation while others appear to be under stringent purifying selection. Nested hierarchical analysis at the levels of mitochondrion, cell, and mouse reveals distinct patterns of inter- and intra-cellular variation for mt-SNVs at different sites. 2. Further, differences in the SNV incidence were observed between mouse neurons and astrocytes for two mt-SNV 9027:G>A and 9419:C>T showing variation in the mutational propensity between these cell types. Purifying selection was observed in neurons as shown by the Ka/Ks statistic, suggesting that neurons are under stronger evolutionary constraint as compared to astrocytes. 3. Intriguingly, these data show strong linkage between the SNV sites at nucleotide positions 9027 and 9461. f.
    Conclusion: This study suggests that segregation as well as clonal expansion of mt-SNVs is specific to individual genomic loci, which is important foundational data in understanding of heteroplasmy and disease thresholds for mutation of pathogenic variants.
    DOI:  https://doi.org/10.1101/2024.06.13.598906
  30. Cell. 2024 Jun 24. pii: S0092-8674(24)00638-X. [Epub ahead of print]
      Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-β response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.
    Keywords:  TGF-β; TMEM2; extracellular matrix; hyaluronan; immunity; mitochondria
    DOI:  https://doi.org/10.1016/j.cell.2024.05.057
  31. J Bone Miner Res. 2024 Jun 22. pii: zjae088. [Epub ahead of print]
      Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular ATP production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs. We also discuss the therapeutic effects of targeting osteoblast mitochondria, highlighting their potential applications in improving bone health.
    DOI:  https://doi.org/10.1093/jbmr/zjae088
  32. MedComm (2020). 2024 Jul;5(7): e606
      We highlight the latest work of Qiu et al. on the core mechanism of ferroptosis induced by rare phospholipids with two polyunsaturated fatty acyl tails (PL-PUFA2s), which has been published in Cell. It has long been acknowledged that PLs containing one PUFA tail (PL-PUFA1s) serve as substrates for phospholipid peroxidation during the process of ferroptosis, owing to their susceptibility to oxidation and prevalence in vivo. However, the authors note that PL-PUFA2s, rather than PL-PUFA1s, represent critical lipid classes involved in the pro-ferroptosis process. Exogenous phosphatidylcholine-PUFA2s accumulate in mitochondria and combine with Complex I within the electron transport chain, thereby potentially resulting in an elevation of mitochondrial reactive oxygen species levels. Then, these mitochondrial peroxides prompt the substantial accumulation of peroxides within the endoplasmic reticulum, ultimately culminating in ferroptosis. These findings shed light on the potential molecular mechanisms underlying the induction of ferroptosis by dietary PL-PUFA2s and offer novel insights for both the evaluation of cellular iron death sensitivity and the treatment of cancer. This article will provide a more comprehensive elucidation of the paper and facilitate an enhanced understanding of the underlying mechanisms for readers.
    Keywords:  ferroptosis; phospholipid
    DOI:  https://doi.org/10.1002/mco2.606
  33. Br J Pharmacol. 2024 Jun 26.
       BACKGROUND AND PURPOSE: Mitochondrial dysfunction contributes to the pathogenesis and maintenance of chemotherapy-induced peripheral neuropathy (CIPN), a significant limitation of cancer chemotherapy. Recently, the stimulation of mitophagy, a pivotal process for mitochondrial homeostasis, has emerged as a promising treatment strategy for neurodegenerative diseases, but its therapeutic effect on CIPN has not been explored. Here, we assessed the mitophagy-inducing activity of 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (PDE701), a diphenyl ether derivative isolated from the marine sponge Dysidea sp., and investigated its therapeutic effect on a CIPN model.
    EXPERIMENTAL APPROACH: Mitophagy activity was determined by a previously established mitophagy assay using mitochondrial Keima (mt-Keima). Mitophagy induction was further verified by western blotting, immunofluorescence, and electron microscopy. Mitochondrial dysfunction was analysed by measuring mitochondrial superoxide levels in SH-SY5Y cells and Drosophila larvae. A thermal nociception assay was used to evaluate the therapeutic effect of PDE701 on the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae.
    KEY RESULTS: PDE701 specifically induced mitophagy but was not toxic to mitochondria. PDE701 ameliorated paclitaxel-induced mitochondrial dysfunction in both SH-SY5Y cells and Drosophila larvae. Importantly, PDE701 also significantly ameliorated paclitaxel-induced thermal hyperalgesia in Drosophila larvae. Knockdown of ATG5 or ATG7 abolished the effect of PDE701 on thermal hyperalgesia, suggesting that PDE701 exerts its therapeutic effect through mitophagy induction.
    CONCLUSION AND IMPLICATIONS: This study identified PDE701 as a novel mitophagy inducer and a potential therapeutic compound for CIPN. Our results suggest that mitophagy stimulation is a promising strategy for the treatment of CIPN and that marine organisms are a potential source of mitophagy-inducing compounds.
    Keywords:  Dysidea sp; mitochondrial dysfunction; mitophagy; paclitaxel; peripheral neuropathy
    DOI:  https://doi.org/10.1111/bph.16476
  34. Curr Opin Cell Biol. 2024 Jun 21. pii: S0955-0674(24)00062-0. [Epub ahead of print]89 102383
      Dysfunction in mitochondrial maintenance and trafficking is commonly correlated with the development of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Thus, biomedical research has been dedicated to understanding how architecturally complex neurons maintain and transport their mitochondria. However, the systems that coordinate mitochondrial QC (quality control) dynamics and trafficking in response to neuronal activity and stress are less understood. Additionally, the degree of integration between the processes of mitochondrial trafficking and QC is unclear. Recent work indicates that mitochondrial motility modulators (i.e., anchors and tethers) help coordinate mitochondrial health by mediating distinct, stress-level-appropriate QC pathways following mitochondrial damage. This review summarizes current evidence supporting the role of two mitochondrial motility modulators, Syntaphilin and Mitofusin 2, in coordinating mitochondrial QC to promote neuronal health. Exploring motility modulators' intricate regulatory molecular landscape may reveal new therapeutic targets for delaying disease progression and enhancing neuronal survival post-insult.
    DOI:  https://doi.org/10.1016/j.ceb.2024.102383
  35. Nucleic Acids Res. 2024 Jun 27. pii: gkae539. [Epub ahead of print]
      The replicative mitochondrial DNA polymerase, Polγ, and its protein regulation are essential for the integrity of the mitochondrial genome. The intricacies of Polγ regulation and its interactions with regulatory proteins, which are essential for fine-tuning polymerase function, remain poorly understood. Misregulation of the Polγ heterotrimer, consisting of (i) PolG, the polymerase catalytic subunit and (ii) PolG2, the accessory subunit, ultimately results in mitochondrial diseases. Here, we used single particle cryo-electron microscopy to resolve the structure of PolG in its apoprotein state and we captured Polγ at three intermediates within the catalytic cycle: DNA bound, engaged, and an active polymerization state. Chemical crosslinking mass spectrometry, and site-directed mutagenesis uncovered the region of LonP1 engagement of PolG, which promoted proteolysis and regulation of PolG protein levels. PolG2 clinical variants, which disrupted a stable Polγ complex, led to enhanced LonP1-mediated PolG degradation. Overall, this insight into Polγ aids in an understanding of mitochondrial DNA replication and characterizes how machinery of the replication fork may be targeted for proteolytic degradation when improperly functioning.
    DOI:  https://doi.org/10.1093/nar/gkae539
  36. Biomedicines. 2024 Jun 11. pii: 1294. [Epub ahead of print]12(6):
      Amyotrophic lateral sclerosis is a severe neurodegenerative disease whose exact cause is still unclear. Currently, research attention is turning to the mitochondrion as a critical organelle of energy metabolism. Current knowledge is sufficient to confirm the involvement of the mitochondria in the pathophysiology of the disease, since the mitochondria are involved in many processes in the cell; however, the exact mechanism of involvement is still unclear. We used peripheral blood mononuclear cells isolated from whole fresh blood from patients with amyotrophic lateral sclerosis for measurement and matched an age- and sex-matched set of healthy subjects. The group of patients consisted of patients examined and diagnosed at the neurological clinic of the University Hospital Martin. The set of controls consisted of healthy individuals who were actively searched, and controls were selected on the basis of age and sex. The group consisted of 26 patients with sporadic forms of ALS (13 women, 13 men), diagnosed based on the definitive criteria of El Escorial. The average age of patients was 54 years, and the average age of healthy controls was 56 years. We used a high-resolution O2K respirometry method, Oxygraph-2k, to measure mitochondrial respiration. Basal respiration was lower in patients by 29.48%, pyruvate-stimulated respiration (respiratory chain complex I) was lower by 29.26%, and maximal respiratory capacity was lower by 28.15%. The decrease in succinate-stimulated respiration (respiratory chain complex II) was 26.91%. Our data confirm changes in mitochondrial respiration in ALS patients, manifested by the reduced function of complex I and complex II of the respiratory chain. These defects are severe enough to confirm this disease's hypothesized mitochondrial damage. Therefore, research interest in the future should be directed towards a deeper understanding of the involvement of mitochondria and respiratory complexes in the pathophysiology of the disease. This understanding could develop new biomarkers in diagnostics and subsequent therapeutic interventions.
    Keywords:  amyotrophic lateral sclerosis; complex I; complex II; high-resolution respirometry; mitochondria; mitochondrion dysfunction
    DOI:  https://doi.org/10.3390/biomedicines12061294
  37. Eur J Hum Genet. 2024 Jun 22.
      Exome and genome sequencing (ES/GS) are routinely used for the diagnosis of genetic diseases in developed countries. However, their implementation is limited in countries from Latin America. We aimed to describe the results of GS in patients with suspected rare genetic diseases in Colombia. We studied 501 patients from 22 healthcare sites from January to December 2022. GS was performed in the index cases using dried blood spots on filtercards. Ancestry analysis was performed under iAdmix. Multiomic testing was performed when needed (biomarker, enzymatic activity, RNA-seq). All tests were performed at an accredited genetic laboratory. Ethnicity prediction data confirmed that 401 patients (80%) were mainly of Amerindian origin. A genetic diagnosis was established for 142 patients with a 28.3% diagnostic yield. The highest diagnostic yield was achieved for pathologies with a metabolic component and syndromic disorders (p < 0.001). Young children had a median of 1 year of diagnostic odyssey, while the median time for adults was significantly longer (15 years). Patients with genetic syndromes have spent more than 75% of their life without a diagnosis, while for patients with neurologic and neuromuscular diseases, the time of the diagnostic odyssey tended to decrease with age. Previous testing, specifically karyotyping or chromosomal microarray were significantly associated with a longer time to reach a definitive diagnosis (p < 0.01). Furthermore, one out of five patients that had an ES before could be diagnosed by GS. The Colombian genome project is the first Latin American study reporting the experience of systematic use of diagnostic GS in rare diseases.
    DOI:  https://doi.org/10.1038/s41431-024-01609-8
  38. Bioinformatics. 2024 Jun 28. 40(Supplement_1): i218-i227
       MOTIVATION: Eukaryotic cells contain organelles called mitochondria that have their own genome. Most cells contain thousands of mitochondria which replicate, even in nondividing cells, by means of a relatively error-prone process resulting in somatic mutations in their genome. Because of the higher mutation rate compared to the nuclear genome, mitochondrial mutations have been used to track cellular lineage, particularly using single-cell sequencing that measures mitochondrial mutations in individual cells. However, existing methods to infer the cell lineage tree from mitochondrial mutations do not model "heteroplasmy," which is the presence of multiple mitochondrial clones with distinct sets of mutations in an individual cell. Single-cell sequencing data thus provide a mixture of the mitochondrial clones in individual cells, with the ancestral relationships between these clones described by a mitochondrial clone tree. While deconvolution of somatic mutations from a mixture of evolutionarily related genomes has been extensively studied in the context of bulk sequencing of cancer tumor samples, the problem of mitochondrial deconvolution has the additional constraint that the mitochondrial clone tree must be concordant with the cell lineage tree.
    RESULTS: We formalize the problem of inferring a concordant pair of a mitochondrial clone tree and a cell lineage tree from single-cell sequencing data as the Nested Perfect Phylogeny Mixture (NPPM) problem. We derive a combinatorial characterization of the solutions to the NPPM problem, and formulate an algorithm, MERLIN, to solve this problem exactly using a mixed integer linear program. We show on simulated data that MERLIN outperforms existing methods that do not model mitochondrial heteroplasmy nor the concordance between the mitochondrial clone tree and the cell lineage tree. We use MERLIN to analyze single-cell whole-genome sequencing data of 5220 cells of a gastric cancer cell line and show that MERLIN infers a more biologically plausible cell lineage tree and mitochondrial clone tree compared to existing methods.
    AVAILABILITY AND IMPLEMENTATION: https://github.com/raphael-group/MERLIN.
    DOI:  https://doi.org/10.1093/bioinformatics/btae231
  39. Front Pediatr. 2024 ;12 1401737
      The mitochondrion is a multifunctional organelle that modulates multiple systems critical for homeostasis during pathophysiological stress. Variation in mitochondrial DNA (mtDNA) copy number (mtDNAcn), a key mitochondrial change associated with chronic stress, is an emerging biomarker for disease pathology and progression. mtDNAcn can be quantified from whole blood samples using qPCR to determine the ratio of mtDNA to nuclear DNA. However, the collection of blood samples in pediatric populations, particularly in infants and young children, can be technically challenging, yield much smaller volume samples, and can be distressing for the patients and their caregivers. Therefore, we have validated a mtDNAcn assay utilizing DNA from simple buccal swabs (Isohelix SK-2S) and report here it's performance in specimens from infants (age = <12 months). Utilizing qPCR to amplify ∼200 bp regions from two mitochondrial (ND1, ND6) and two nuclear (BECN1, NEB) genes, we demonstrated absolute (100%) concordance with results from low-pass whole genome sequencing (lpWGS). We believe that this method overcomes key obstacles to measuring mtDNAcn in pediatric populations and creates the possibility for development of clinical assays to measure mitochondrial change during pathophysiological stress.
    Keywords:  DNA RNA extraction; adverse childhood experience (ACE); adversity; lpWGS; mitochondrial DNA copy number
    DOI:  https://doi.org/10.3389/fped.2024.1401737
  40. Biochim Biophys Acta Mol Basis Dis. 2024 Jun 21. pii: S0925-4439(24)00310-7. [Epub ahead of print]1870(7): 167317
      Permeabilization of the outer mitochondrial membrane is а physiological process that can allow certain molecules to pass through it, such as low molecular weight solutes required for cellular respiration. This process is also important for the development of various modes of cell death. Depending on the severity of this process, cells can die by autophagy, apoptosis, or necrosis/necroptosis. Distinct types of pores can be opened at the outer mitochondrial membrane depending on physiological or pathological stimuli, and different mechanisms can be activated in order to open these pores. In this comprehensive review, all these types of permeabilization, the mechanisms of their activation, and their role in various diseases are discussed.
    Keywords:  Cell death; Disease; Mechanisms; Mitochondrial membrane; Permeabilization
    DOI:  https://doi.org/10.1016/j.bbadis.2024.167317
  41. Sci Adv. 2024 Jun 28. 10(26): eadn4508
      Once considered as a "metabolic waste," lactate is now recognized as a major fuel for tricarboxylic acid (TCA) cycle. Our metabolic flux analysis reveals that skeletal muscle mainly uses lactate to fuel TCA cycle. Lactate is transported through the cell membrane via monocarboxylate transporters (MCTs) in which MCT1 is highly expressed in the muscle. We analyzed how MCT1 affects muscle functions using mice with specific deletion of MCT1 in skeletal muscle. MCT1 deletion enhances running performance, increases oxidative fibers while decreasing glycolytic fibers, and enhances flux of glucose to TCA cycle. MCT1 deficiency increases the expression of mitochondrial proteins, augments cell respiration rate, and elevates mitochondrial activity in the muscle. Mechanistically, the protein level of PGC-1α, a master regulator of mitochondrial biogenesis, is elevated upon loss of MCT1 via increases in cellular NAD+ level and SIRT1 activity. Collectively, these results demonstrate that MCT1-mediated lactate shuttle plays a key role in regulating muscle functions by modulating mitochondrial biogenesis and TCA flux.
    DOI:  https://doi.org/10.1126/sciadv.adn4508
  42. bioRxiv. 2024 Jun 16. pii: 2024.06.13.598672. [Epub ahead of print]
       Background: Computational approaches to support rare disease diagnosis are challenging to build, requiring the integration of complex data types such as ontologies, gene-to-phenotype associations, and cross-species data into variant and gene prioritisation algorithms (VGPAs). However, the performance of VGPAs has been difficult to measure and is impacted by many factors, for example, ontology structure, annotation completeness or changes to the underlying algorithm. Assertions of the capabilities of VGPAs are often not reproducible, in part because there is no standardised, empirical framework and openly available patient data to assess the efficacy of VGPAs - ultimately hindering the development of effective prioritisation tools.
    Results: In this paper, we present our benchmarking tool, PhEval, which aims to provide a standardised and empirical framework to evaluate phenotype-driven VGPAs. The inclusion of standardised test corpora and test corpus generation tools in the PhEval suite of tools allows open benchmarking and comparison of methods on standardised data sets.
    Conclusions: PhEval and the standardised test corpora solve the issues of patient data availability and experimental tooling configuration when benchmarking and comparing rare disease VGPAs. By providing standardised data on patient cohorts from real-world case-reports and controlling the configuration of evaluated VGPAs, PhEval enables transparent, portable, comparable and reproducible benchmarking of VGPAs. As these tools are often a key component of many rare disease diagnostic pipelines, a thorough and standardised method of assessment is essential for improving patient diagnosis and care.
    DOI:  https://doi.org/10.1101/2024.06.13.598672
  43. Nat Commun. 2024 Jun 25. 15(1): 5386
      Aberrantly accumulated metabolites elicit intra- and inter-cellular pro-oncogenic cascades, yet current measurement methods require sample perturbation/disruption and lack spatio-temporal resolution, limiting our ability to fully characterize their function and distribution. Here, we show that Raman spectroscopy (RS) can directly detect fumarate in living cells in vivo and animal tissues ex vivo, and that RS can distinguish between Fumarate hydratase (Fh1)-deficient and Fh1-proficient cells based on fumarate concentration. Moreover, RS reveals the spatial compartmentalization of fumarate within cellular organelles in Fh1-deficient cells: consistent with disruptive methods, we observe the highest fumarate concentration (37 ± 19 mM) in mitochondria, where the TCA cycle operates, followed by the cytoplasm (24 ± 13 mM) and then the nucleus (9 ± 6 mM). Finally, we apply RS to tissues from an inducible mouse model of FH loss in the kidney, demonstrating RS can classify FH status. These results suggest RS could be adopted as a valuable tool for small molecule metabolic imaging, enabling in situ non-destructive evaluation of fumarate compartmentalization.
    DOI:  https://doi.org/10.1038/s41467-024-49403-w
  44. Int J Mol Sci. 2024 Jun 16. pii: 6622. [Epub ahead of print]25(12):
      Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.
    Keywords:  Parkinson’s disease; antioxidant defences; coenzyme Q10; mitochondrial biogenesis; mitochondrial dysfunction; neurodegeneration; oxidative stress; pentose phosphate pathway; therapeutics
    DOI:  https://doi.org/10.3390/ijms25126622
  45. Curr Aging Sci. 2024 Jun 12.
      Aging-related alteration of mitochondrial morphology, impairment in metabolic capacity, bioenergetics, and biogenesis are closely associated with loss of muscle mass and function. Mitochondrial Reactive Oxygen Species (ROS) stimulate muscular redox signaling mechanisms. Bioenergetic integrity of mitochondria and redox signaling dynamics deteriorates in aged skeletal muscle. Mitochondrial bioenergetic impairment leads to excessive ROS levels and induces the generation of defective mitochondria. Higher ROS levels may induce senescence or apoptosis. It is not a resolved issue that mitochondrial dysfunction is either the sole reason or a consequence of muscle loss (or both). However, Increasing evidence emphasizes that dysregulated mitochondrial redox signaling has a central role in age-related muscle loss. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates redox signaling pathways with the expression of antioxidant genes. As the aberrant redox signaling mechanisms in aging skeletal muscle become clearer, new natural and synthetic Nrf2-modulating substances and integrated daily physical activity alternatives are coming into view for preventing muscle loss in the elderly. A comprehensive understanding of the relationship between redox signaling pathways and age-related sarcopenia can help us to prevent sarcopenia and its frailty effects with an optimized exercise program as an innovative non-pharmacological therapeutic approach. A further aspect is necessary to consider both individualized physical training options and alternative Nrf2 signaling modulators. Ameliorating the redox signaling with physical activity and pharmacological interventions may help to prevent sarcopenia and its frailty effects.
    Keywords:  Aging; exercise; mitochondria; reactive oxygen species; redox signaling; sarcopenia\
    DOI:  https://doi.org/10.2174/0118746098315667240606052523
  46. Metabolites. 2024 Jun 18. pii: 341. [Epub ahead of print]14(6):
      Recent years have seen a surge in research focused on NAD+ decline and potential interventions, and despite significant progress, new discoveries continue to highlight the complexity of NAD+ biology. Nicotinamide mononucleotide (NMN), a well-established NAD+ precursor, has garnered considerable interest due to its capacity to elevate NAD+ levels and induce promising health benefits in preclinical models. Clinical trials investigating NMN supplementation have yielded variable outcomes while shedding light on the intricacies of NMN metabolism and revealing the critical roles played by gut microbiota and specific cellular uptake pathways. Individual variability in factors such as lifestyle, health conditions, genetics, and gut microbiome composition likely contributes to the observed discrepancies in clinical trial results. Preliminary evidence suggests that NMN's effects may be context-dependent, varying based on a person's physiological state. Understanding these nuances is critical for definitively assessing the impact of manipulating NAD+ levels through NMN supplementation. Here, we review NMN metabolism, focusing on current knowledge, pinpointing key areas where further research is needed, and outlining future directions to advance our understanding of its potential clinical significance.
    Keywords:  NAD+; bioavailability; human longevity; nicotinamide mononucleotide; vitamin B3
    DOI:  https://doi.org/10.3390/metabo14060341
  47. Int J Mol Sci. 2024 Jun 09. pii: 6384. [Epub ahead of print]25(12):
      Nicotinamide adenine dinucleotide (NAD) is involved in renal physiology and is synthesized by nicotinamide mononucleotide adenylyltransferase (NMNAT). NMNAT exists as three isoforms, namely, NMNAT1, NMNAT2, and NMNAT3, encoded by Nmnat1, Nmnat2, and Nmnat3, respectively. In diabetic nephropathy (DN), NAD levels decrease, aggravating renal fibrosis. Conversely, sodium-glucose cotransporter-2 inhibitors increase NAD levels, mitigating renal fibrosis. In this regard, renal NAD synthesis has recently gained attention. However, the renal role of Nmnat in DN remains uncertain. Therefore, we investigated the role of Nmnat by establishing genetically engineered mice. Among the three isoforms, NMNAT1 levels were markedly reduced in the proximal tubules (PTs) of db/db mice. We examined the phenotypic changes in PT-specific Nmnat1 conditional knockout (CKO) mice. In CKO mice, Nmnat1 expression in PTs was downregulated when the tubules exhibited albuminuria, peritubular type IV collagen deposition, and mitochondrial ribosome (mitoribosome) excess. In CKO mice, Nmnat1 deficiency-induced mitoribosome excess hindered mitoribosomal translation of mitochondrial inner membrane-associated oxidative phosphorylation complex I (CI), CIII, CIV, and CV proteins and mitoribosomal dysfunction. Furthermore, the expression of hypermethylated in cancer 1, a transcription repressor, was downregulated in CKO mice, causing mitoribosome excess. Nmnat1 overexpression preserved mitoribosomal function, suggesting its protective role in DN.
    Keywords:  Nmnat1; diabetic nephropathy; mitoribosome
    DOI:  https://doi.org/10.3390/ijms25126384
  48. Pharmacol Res. 2024 Jun 23. pii: S1043-6618(24)00206-8. [Epub ahead of print]206 107261
      The longevity protein sirtuins (SIRTs) belong to a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. In mammals, SIRTs comprise seven members (SIRT1-7) which are localized to different subcellular compartments. As the most prominent mitochondrial deacetylases, SIRT3 is known to be regulated by various mechanisms and participate in virtually all aspects of mitochondrial homeostasis and metabolism, exerting significant impact on multiple organs. Notably, the kidneys possess an abundance of mitochondria that provide substantial energy for filtration and reabsorption. A growing body of evidence now supports the involvement of SIRT3 in several renal diseases, including acute kidney injury, chronic kidney disease, and diabetic nephropathy; notably, these diseases are all associated with aging. In this review, we summarize the emerging role of SIRT3 in renal diseases and aging, and highlights the intricate mechanisms by which SIRT3 exerts its effects. In addition, we highlight the potential therapeutic significance of modulating SIRT3 and provide valuable insights into the therapeutic role of SIRT3 in renal diseases to facilitate clinical application.
    Keywords:  Mitochondrial homeostasis; Potential therapies; Renal aging; Renal diseases; Sirtuin 3
    DOI:  https://doi.org/10.1016/j.phrs.2024.107261
  49. Science. 2024 Jun 28. 384(6703): ado7082
      Prion disease is caused by misfolding of the prion protein (PrP) into pathogenic self-propagating conformations, leading to rapid-onset dementia and death. However, elimination of endogenous PrP halts prion disease progression. In this study, we describe Coupled Histone tail for Autoinhibition Release of Methyltransferase (CHARM), a compact, enzyme-free epigenetic editor capable of silencing transcription through programmable DNA methylation. Using a histone H3 tail-Dnmt3l fusion, CHARM recruits and activates endogenous DNA methyltransferases, thereby reducing transgene size and cytotoxicity. When delivered to the mouse brain by systemic injection of adeno-associated virus (AAV), Prnp-targeted CHARM ablates PrP expression across the brain. Furthermore, we have temporally limited editor expression by implementing a kinetically tuned self-silencing approach. CHARM potentially represents a broadly applicable strategy to suppress pathogenic proteins, including those implicated in other neurodegenerative diseases.
    DOI:  https://doi.org/10.1126/science.ado7082
  50. Front Physiol. 2024 ;15 1393232
      The complex and dynamic interaction between cellular energy control and gene expression modulation is shown by the intersection between mitochondrial metabolism and epigenetics in hypoxic environments. Poor oxygen delivery to tissues, or hypoxia, is a basic physiological stressor that sets off a series of reactions in cells to adapt and endure oxygen-starved environments. Often called the "powerhouse of the cell," mitochondria are essential to cellular metabolism, especially regarding producing energy through oxidative phosphorylation. The cellular response to hypoxia entails a change in mitochondrial metabolism to improve survival, including epigenetic modifications that control gene expression without altering the underlying genome. By altering the expression of genes involved in angiogenesis, cell survival, and metabolism, these epigenetic modifications help cells adapt to hypoxia. The sophisticated interplay between mitochondrial metabolism and epigenetics in hypoxia is highlighted by several important points, which have been summarized in the current article. Deciphering the relationship between mitochondrial metabolism and epigenetics during hypoxia is essential to understanding the molecular processes that regulate cellular adaptation to reduced oxygen concentrations.
    Keywords:  epigenetic modifications; gene expression; hypoxia; mitochondrial metabolism; oxygen
    DOI:  https://doi.org/10.3389/fphys.2024.1393232
  51. Metabolites. 2024 Jun 19. pii: 343. [Epub ahead of print]14(6):
      The complex process of aging leads to a gradual deterioration in the function of cells, tissues, and the entire organism, thereby increasing the risk of disease and death. Nicotinamide N-methyltransferase (NNMT) has attracted attention as a potential target for combating aging and its related pathologies. Studies have shown that NNMT activity increases over time, which is closely associated with the onset and progression of age-related diseases. NNMT uses S-adenosylmethionine (SAM) as a methyl donor to facilitate the methylation of nicotinamide (NAM), converting NAM into S-adenosyl-L-homocysteine (SAH) and methylnicotinamide (MNA). This enzymatic action depletes NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and generates SAH, a precursor of homocysteine (Hcy). The reduction in the NAD+ levels and the increase in the Hcy levels are considered important factors in the aging process and age-related diseases. The efficacy of RNA interference (RNAi) therapies and small-molecule inhibitors targeting NNMT demonstrates the potential of NNMT as a therapeutic target. Despite these advances, the exact mechanisms by which NNMT influences aging and age-related diseases remain unclear, and there is a lack of clinical trials involving NNMT inhibitors and RNAi drugs. Therefore, more in-depth research is needed to elucidate the precise functions of NNMT in aging and promote the development of targeted pharmaceutical interventions. This paper aims to explore the specific role of NNMT in aging, and to evaluate its potential as a therapeutic target.
    Keywords:  aging-associated diseases; cancer; cardiovascular diseases; diabetes; homocysteine (Hcy); neurodegenerative diseases; nicotinamide N-methyltransferase (NNMT); nicotinamide adenine dinucleotide (NAD+)
    DOI:  https://doi.org/10.3390/metabo14060343
  52. bioRxiv. 2024 Jun 12. pii: 2024.06.10.598354. [Epub ahead of print]
      Almost every organ consists of many cell types, each with its unique functions. Proteomes of these cell types are thus unique too. But it is reasonable to assume that interactome (inter and intra molecular interactions of proteins) are also distinct since protein interactions are what ultimately carry out the function. Podocytes and tubules are two cell types within kidney with vastly different functions: podocytes envelop the blood vessels in the glomerulus and act as filters while tubules are located downstream of the glomerulus and are responsible for reabsorption of important nutrients. It has been long known that for tubules mitochondria plays an important role as they require a lot of energy to carry out their functions. In podocytes, however, it has been assumed that mitochondria might not matter as much in both normal physiology and pathology 1 . Here we have applied quantitative cross-linking mass spectrometry to compare mitochondrial interactomes of tubules and podocytes using a transgenic mitochondrial tagging strategy to immunoprecipitate cell-specific mitochondria directly from whole kidney. We have uncovered that mitochondrial proteomes of these cell types are quite similar, although still showing unique features that correspond to known functions, such as high energy production through TCA cycle in tubules and requirements for detoxification in podocytes which are on the frontline of filtration where they encounter toxic compounds and therefore, as a non-renewing cell type they must have ways to protect themselves from cellular toxicity. But we gained much deeper insight with the interactomics data. We were able to find pathways differentially regulated in podocytes and tubules based on changing cross-link levels and not just protein levels. Among these pathways are betaine metabolism, lysine degradation, and many others. We have also demonstrated how quantitative interactomics could be used to detect different activity levels of an enzyme even when protein abundances of it are the same between cell types. We have validated this finding with an orthogonal activity assay. Overall, this work presents a new view of mitochondrial biology for two important, but functionally distinct, cell types within the mouse kidney showing both similarities and unique features. This data can continue to be explored to find new aspects of mitochondrial biology, especially in podocytes, where mitochondria has been understudied. In the future this methodology can also be applied to other organs to uncover differences in the function of cell types.
    DOI:  https://doi.org/10.1101/2024.06.10.598354
  53. Nat Struct Mol Biol. 2024 Jun 25.
      Mitophagy preserves overall mitochondrial fitness by selectively targeting damaged mitochondria for degradation. The regulatory mechanisms that prevent PTEN-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase Parkin (PINK1/Parkin)-dependent mitophagy and other selective autophagy pathways from overreacting while ensuring swift progression once initiated are largely elusive. Here, we demonstrate how the TBK1 (TANK-binding kinase 1) adaptors NAP1 (NAK-associated protein 1) and SINTBAD (similar to NAP1 TBK1 adaptor) restrict the initiation of OPTN (optineurin)-driven mitophagy by competing with OPTN for TBK1. Conversely, they promote the progression of nuclear dot protein 52 (NDP52)-driven mitophagy by recruiting TBK1 to NDP52 and stabilizing its interaction with FIP200. Notably, OPTN emerges as the primary recruiter of TBK1 during mitophagy initiation, which in return boosts NDP52-mediated mitophagy. Our results thus define NAP1 and SINTBAD as cargo receptor rheostats, elevating the threshold for mitophagy initiation by OPTN while promoting the progression of the pathway once set in motion by supporting NDP52. These findings shed light on the cellular strategy to prevent pathway hyperactivity while still ensuring efficient progression.
    DOI:  https://doi.org/10.1038/s41594-024-01338-y
  54. bioRxiv. 2024 Jun 13. pii: 2024.06.12.593113. [Epub ahead of print]
    Genome Aggregation Database Consortium
      Incomplete penetrance, or absence of disease phenotype in an individual with a disease-associated variant, is a major challenge in variant interpretation. Studying individuals with apparent incomplete penetrance can shed light on underlying drivers of altered phenotype penetrance. Here, we investigate clinically relevant variants from ClinVar in 807,162 individuals from the Genome Aggregation Database (gnomAD), demonstrating improved representation in gnomAD version 4. We then conduct a comprehensive case-by-case assessment of 734 predicted loss of function variants (pLoF) in 77 genes associated with severe, early-onset, highly penetrant haploinsufficient disease. We identified explanations for the presumed lack of disease manifestation in 701 of the variants (95%). Individuals with unexplained lack of disease manifestation in this set of disorders rarely occur, underscoring the need and power of deep case-by-case assessment presented here to minimize false assignments of disease risk, particularly in unaffected individuals with higher rates of secondary properties that result in rescue.
    DOI:  https://doi.org/10.1101/2024.06.12.593113
  55. Mol Genet Genomic Med. 2024 Jun;12(6): e2485
       OBJECTIVE: To further comprehend the phenotype of multiple mitochondrial dysfunction syndrome type 3 (MMDS3:OMIM#615330) caused by IBA57 mutation. We present a case involving a patient who experienced acute neurological regression, and the literature was reviewed.
    METHODS: Clinical data and laboratory test results were collected; early language and development progress were tested; and genetic testing was performed. Bioinformatics analysis was performed using Mutation Taster and PolyPhen-2, and the literature in databases such as PubMed and CNKI was searched using MMDS3 and IBA57 as keywords.
    RESULTS: The child, aged 1 year and 2 months, had motor decline, unable to sit alone, limited right arm movement, hypotonia, hyperreflexia of both knees, and Babinski sign positivity on the right side, accompanied by nystagmus. Blood lactate levels were elevated at 2.50 mmol/L. Brain MR indicated slight swelling in the bilateral frontoparietal and occipital white matter areas and the corpus callosum, with extensive abnormal signals on T1 and T2 images, along with the semioval center and occipital lobes bilaterally. The multiple abnormal signals in the brain suggested metabolic leukoencephalopathy. Whole-exome sequencing analysis revealed that the child had two heterozygous mutations in the IBA57 gene, c.286T>C (p.Y96H) (likely pathogenic, LP) and c.992T>A (p.L331Q) (variant of uncertain significance, VUS). As of March 2023, a literature search showed that 56 cases of MMDS3 caused by IBA57 mutation had been reported worldwide, with 35 cases reported in China. Among the 35 IBA57 mutations listed in the HGMD database, there were 28 missense or nonsense mutations, 2 splicing mutations, 2 small deletions, and 3 small insertions.
    CONCLUSION: MMDS3 predominantly manifests in infancy, with primary symptoms including feeding difficulties, neurological functional regression, muscle weakness, with severe cases potentially leading to mortality. Diagnosis is supported by elevated lactate levels, multisystem impairment (including auditory and visual systems), and distinctive MRI findings. Whole-exome sequencing is crucial for diagnosis. Currently, cocktail therapy offers symptomatic relief.
    Keywords:   IBA57 ; acute neurologic regression; mitochondrial diseases; multiple mitochondrial dysfunction syndrome (MMDS)
    DOI:  https://doi.org/10.1002/mgg3.2485
  56. Sci Adv. 2024 Jun 28. 10(26): eadk2913
      The blood-brain barrier (BBB) acts as the crucial physical filtration structure in the central nervous system. Here, we investigate the role of a specific subset of astrocytes in the regulation of BBB integrity. We showed that Dmp1-expressing astrocytes transfer mitochondria to endothelial cells via their endfeet for maintaining BBB integrity. Deletion of the Mitofusin 2 (Mfn2) gene in Dmp1-expressing astrocytes inhibited the mitochondrial transfer and caused BBB leakage. In addition, the decrease of MFN2 in astrocytes contributes to the age-associated reduction of mitochondrial transfer efficiency and thus compromises the integrity of BBB. Together, we describe a mechanism in which astrocytes regulate BBB integrity through mitochondrial transfer. Our findings provide innnovative insights into the cellular framework that underpins the progressive breakdown of BBB associated with aging and disease.
    DOI:  https://doi.org/10.1126/sciadv.adk2913
  57. JMIR Bioinform Biotechnol. 2022 Sep 15. 3(1): e37701
       BACKGROUND: In recent years, thanks to the rapid development of next-generation sequencing (NGS) technology, an entire human genome can be sequenced in a short period. As a result, NGS technology is now being widely introduced into clinical diagnosis practice, especially for diagnosis of hereditary disorders. Although the exome data of single-nucleotide variant (SNV) can be generated using these approaches, processing the DNA sequence data of a patient requires multiple tools and complex bioinformatics pipelines.
    OBJECTIVE: This study aims to assist physicians to automatically interpret the genetic variation information generated by NGS in a short period. To determine the true causal variants of a patient with genetic disease, currently, physicians often need to view numerous features on every variant manually and search for literature in different databases to understand the effect of genetic variation.
    METHODS: We constructed a machine learning model for predicting disease-causing variants in exome data. We collected sequencing data from whole-exome sequencing (WES) and gene panel as training set, and then integrated variant annotations from multiple genetic databases for model training. The model built ranked SNVs and output the most possible disease-causing candidates. For model testing, we collected WES data from 108 patients with rare genetic disorders in National Taiwan University Hospital. We applied sequencing data and phenotypic information automatically extracted by a keyword extraction tool from patient's electronic medical records into our machine learning model.
    RESULTS: We succeeded in locating 92.5% (124/134) of the causative variant in the top 10 ranking list among an average of 741 candidate variants per person after filtering. AI Variant Prioritizer was able to assign the target gene to the top rank for around 61.1% (66/108) of the patients, followed by Variant Prioritizer, which assigned it for 44.4% (48/108) of the patients. The cumulative rank result revealed that our AI Variant Prioritizer has the highest accuracy at ranks 1, 5, 10, and 20. It also shows that AI Variant Prioritizer presents better performance than other tools. After adopting the Human Phenotype Ontology (HPO) terms by looking up the databases, the top 10 ranking list can be increased to 93.5% (101/108).
    CONCLUSIONS: We successfully applied sequencing data from WES and free-text phenotypic information of patient's disease automatically extracted by the keyword extraction tool for model training and testing. By interpreting our model, we identified which features of variants are important. Besides, we achieved a satisfactory result on finding the target variant in our testing data set. After adopting the HPO terms by looking up the databases, the top 10 ranking list can be increased to 93.5% (101/108). The performance of the model is similar to that of manual analysis, and it has been used to help National Taiwan University Hospital with a genetic diagnosis.
    Keywords:  artificial intelligence; genetic variation analysis; machine learning; next-generation sequencing; whole-exome sequencing
    DOI:  https://doi.org/10.2196/37701
  58. Curr Med Chem. 2024 Jun 26.
      Metabolic syndrome (MetS) is a complex of serious pathologies with a high prevalence worldwide. Disruption of mitochondrial biogenesis and its interaction with other cell organelles plays an important role in the development of MetS. Studies have revealed the phenotypic and functional heterogeneity of mitochondria that exist within a single cell and can regulate metabolic signaling pathways, influencing the development of metabolic diseases. Excessive intake of fatty acids leads to changes in fatty acid metabolism that affect the biology of important cell organelles - the lipid droplets, whose specific biology is not fully understood. Perhaps targeted molecular genetic stimulation aimed at regulating the contact between mitochondria and lipids can break the vicious cycle of inflammation in MetS and restore normal cell function, reducing the risk of developing concomitant pathologies. The review describes potential (promising) therapeutic molecular targets associated with mitochondria and lipid droplets, focusing on the proteins involved in their contact and emphasizing their role in the pathogenesis of MetS.
    Keywords:  Metabolic syndrome; fatty; insulin resistance; lipid droplet; liver disease.; mitochondria
    DOI:  https://doi.org/10.2174/0109298673309247240610050423
  59. Cell Biol Int. 2024 Jun 23.
      ATAD3 is a vital ATPase of the inner mitochondrial membrane of pluri-cellular eukaryotes, with largely unknown functions but early required for organism development as necessary for mitochondrial biogenesis. ATAD3 knock-down in C. elegans inhibits at first the development of adipocyte-like intestinal tissue so we used mouse adipocyte model 3T3-L1 cells to analyze ATAD3 functions during adipogenesis and lipogenesis in a mammalian model. ATAD3 function was studied by stable and transient modulation of ATAD3 expression in adipogenesis- induced 3T3-L1 cells using Knock-Down and overexpression strategies, exploring different steps of adipocyte differentiation and lipogenesis. We show that (i) an increase in ATAD3 is preceding differentiation-induced mitochondrial biogenesis; (ii) downregulation of ATAD3 inhibits adipogenesis, lipogenesis, and impedes overexpression of many mitochondrial proteins; (iii) ATAD3 re-expression rescues the phenotype of ATAD3 KD, and (iv) differentiation and lipogenesis are accelerated by ATAD3 overexpression, but inhibited by expression of a dominant-negative mutant. We further show that the ATAD3 KD phenotype is not due to altered insulin signal but involves a limitation of mitochondrial biogenesis linked to Drp1. These results demonstrate that ATAD3 is limiting for in vitro mitochondrial biogenesis and adipogenesis/lipogenesis and therefore that ATAD3 mutation/over- or under-expression could be involved in adipogenic and lipogenic pathologies.
    Keywords:  3T3‐L1 cells; ACC; AMPK; ATAD3; Drp1; adipocyte
    DOI:  https://doi.org/10.1002/cbin.12206
  60. Orphanet J Rare Dis. 2024 Jun 24. 19(1): 243
       AIM: To review the available evidence about the strategies implemented or proposed for coverage or reimbursement for currently approved gene therapies.
    METHODS: A scoping review was conducted to analyze the evidence published during the years 2016 to 2023. The main search criteria were coverage or reimbursement of gene therapy by healthcare systems. The eligible articles were those that described or proposed a financing model used to provide coverage in the various systems around the world.
    RESULTS: The study identified 279 publications, and after removing duplicates and screening for eligibility, 10 were included in the study. The results show that various financing models have been proposed, including subscription-based payment models, outcome-based payment models, and amortization strategies. However, several barriers to implementing these models were identified, such as deficiencies in informatics systems for data collection, changes in laws or regulations, the lack of accessible clinical endpoints and administrative costs.
    CONCLUSION: This scoping review provides an overview of financing strategies for gene therapies. Gene therapies can cure rare or previously intractable diseases, but their high cost can make access difficult. Publishing experiences with these models can help evaluate their use and gather more evidence for their effectiveness.
    DOI:  https://doi.org/10.1186/s13023-024-03249-z
  61. Exp Eye Res. 2024 Jun 26. pii: S0014-4835(24)00204-5. [Epub ahead of print] 109983
      Over the past twenty years, ocular gene therapy has primarily focused on addressing diseases linked to various genetic factors. The eye is an ideal candidate for gene therapy due to its unique characteristics, such as easy accessibility and the ability to target both corneal and retinal conditions, including retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), and Stargardt disease. Currently, literature documents 33 clinical trials in this field, with the most promising results emerging from trials focused on LCA. These successes have catalyzed further research into other ocular conditions such as glaucoma, AMD, RP, and choroideremia. The effectiveness of gene therapy relies on the efficient delivery of genetic material to specific cells, ensuring sustained and optimal gene expression over time. Viral vectors have been widely used for this purpose, although concerns about potential risks such as immune reactions and genetic mutations have led to the development of non-viral vector systems. Preliminary laboratory research and clinical investigations have shown a connection between vector dosage and the intensity of immune response and inflammation in the eye. The method of administration significantly influences these reactions, with subretinal delivery resulting in a milder humoral response compared to the intravitreal route. This review discusses various ophthalmic diseases, including both corneal and retinal conditions, and their underlying mechanisms, highlighting recent advances and applications in ocular gene therapies.
    Keywords:  Gene therapy; clinical trials; ocular gene delivery; ophthalmic diseases; viral and non-viral vectors
    DOI:  https://doi.org/10.1016/j.exer.2024.109983