bioRxiv. 2024 Feb 28. pii: 2024.02.24.581168. [Epub ahead of print]
Wenjuan Wang,
Ermin Li,
Jianqiu Zou,
Qu Chen,
Juan Ayala,
Yuan Wen,
Md Sadikul Islam,
Neal L Weintraub,
David J Fulton,
Qiangrong Liang,
Jiliang Zhou,
Jinbao Liu,
Jie Li,
Yi Sun,
Huabo Su.
Clearance of damaged mitochondria via mitophagy is crucial for cellular homeostasis. While the role of ubiquitin (Ub) ligase PARKIN in mitophagy has been extensively studied, increasing evidence suggests the existence of PARKIN-independent mitophagy in highly metabolically active organs such as the heart. Here, we identify a crucial role for Cullin-RING Ub ligase 5 (CRL5) in basal mitochondrial turnover in cardiomyocytes. CRL5 is a multi-subunit Ub ligase comprised by the catalytic RING box protein RBX2 (also known as SAG), scaffold protein Cullin 5 (CUL5), and a substrate-recognizing receptor. Analysis of the mitochondrial outer membrane-interacting proteome uncovered a robust association of CRLs with mitochondria. Subcellular fractionation, immunostaining, and immunogold electron microscopy established that RBX2 and Cul5, two core components of CRL5, localizes to mitochondria. Depletion of RBX2 inhibited mitochondrial ubiquitination and turnover, impaired mitochondrial membrane potential and respiration, and increased cell death in cardiomyocytes. In vivo , deletion of the Rbx2 gene in adult mouse hearts suppressed mitophagic activity, provoked accumulation of damaged mitochondria in the myocardium, and disrupted myocardial metabolism, leading to rapid development of dilated cardiomyopathy and heart failure. Similarly, ablation of RBX2 in the developing heart resulted in dilated cardiomyopathy and heart failure. Notably, the action of RBX2 in mitochondria is not dependent on PARKIN, and PARKIN gene deletion had no impact on the onset and progression of cardiomyopathy in RBX2-deficient hearts. Furthermore, RBX2 controls the stability of PINK1 in mitochondria. Proteomics and biochemical analyses further revealed a global impact of RBX2 deficiency on the mitochondrial proteome and identified several mitochondrial proteins as its putative substrates. These findings identify RBX2-CRL5 as a mitochondrial Ub ligase that controls mitophagy under physiological conditions in a PARKIN-independent, PINK1-dependent manner, thereby regulating cardiac homeostasis.
Non-standard abbreviations and acronyms: RBX2, RING-Box Protein 2; SAG, Sensitive to Apoptosis Gene; Ub, Ubiquitin; pS65-Ub, phosphorylated Ub at serine 65; MAVS, mitochondrial antiviral-signaling protein; AAV, adeno-associated virus; AV, adenovirus; siRNA, Small interfering RNA; GFP, green fluorescent protein; CUL, cullin; RING, Really Interesting New Gene; CRLs, cullin-RING ligases; CSN, COP9 signalosome; APEX2, ascorbate peroxidase 2; mito, mitochondrial; cyto, cytosolic; MOM, mitochondrial outer membrane; CCCP, Carbonyl Cyanide Chlorophenylhydrazone; OMP25, Outer membrane protein 25; PK, proteinase K; HA, hemagglutinin; TMRM, Tetramethylrhodamine methyl ester perchlorate; αMHC,α-myosin heavy chain; CKO, cardiomyocyte-specific knockout; TAM, tamoxifen; TMT, tandem mass tag; KD, knockdown; CTL, control; MCM, MerCreMer; iCKO, inducible cardiomyocyte-specific knockout; BFA, bafilomycin A1; PCA, principle component analysis; MS, Mass spectrometry; DEPs, differentially expressed proteins; FC, fold change; FDR, False Discovery Rate; KEGG, Kyoto encyclopedia of genes and genomes; ER, endoplasmic reticulum; DKO, double knockout; CM, cardiomyocyte; cTnT, cardiac troponin T; NRVCs, neonatal rat ventricular cardiomyocytes; NRVMs, neonatal mouse ventricular cardiomyocytes; NMVFs, neonatal mouse ventricular fibroblasts; HF, heart failure; KO, knockout; MF, Molecular Functions; CC, Cellular Components; BP, Biological Process; TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling; SCF, Skp1-Cullin 1-F-box.