bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2022‒07‒10
35 papers selected by
Catalina Vasilescu
University of Helsinki


  1. Cell Reprogram. 2022 Jul 08.
      Mitochondrial diseases are a heterogeneous group of rare genetic disorders caused by mutations in nuclear or mitochondrial DNA (mtDNA). These diseases are frequently multisystemic, although mainly affect tissues that require large amounts of energy such as the brain. Mutations in mitochondrial transfer RNA (mt-tRNA) lead to defects in protein translation that may compromise some or all mtDNA-encoded proteins. Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS) syndrome is mainly caused by the m.3243A>G mutation in the mt-tRNALeu(UUR) (MT-TL1) gene. Owing to the lack of proper animal models, several cellular models have been developed to study the disease, providing insight in the pathophysiological mechanisms of MELAS. In this study, we show a successful direct conversion of MELAS patient-derived fibroblasts into induced neurons (iNs) for the first time, as well as an electrophysiological characterization of iNs cocultured with astrocytes. In addition, we performed bioenergetics analysis to study the consequences of m.3243A>G mutation in this neuronal model of MELAS syndrome.
    Keywords:  MELAS syndrome; direct reprogramming; induced neurons; mitochondria; mitochondrial diseases
    DOI:  https://doi.org/10.1089/cell.2022.0055
  2. FEBS Lett. 2022 Jul 04.
      Mitochondrial dysfunction is known to contribute to a range of diseases, and primary mitochondrial defects strongly impact high-energy organs such as the heart. Platforms for high-throughput and human-relevant assessment of mitochondrial diseases are currently lacking, hindering the development of targeted therapies. In the past decade, human induced pluripotent stem cells (iPSCs) have become a promising technology for drug discovery in basic and clinical research. In particular, human iPSC-derived cardiomyocytes (iPSC-CMs) offer a unique tool to study a wide range of mitochondrial functions and possess the potential to become a key translational asset for mitochondrial drug development. This review summarizes mitochondrial functions and recent therapeutic discoveries, advancements, and limitations of using iPSC-CMs to study mitochondrial diseases of the heart with an emphasis on cardiac applications.
    Keywords:  cardiomyocyte; cardiovascular disease; heart; iPSC; mitochondria; stem cell
    DOI:  https://doi.org/10.1002/1873-3468.14444
  3. Front Cardiovasc Med. 2022 ;9 917135
      Mitochondria play a key role in cellular metabolism. Mitochondrial dynamics (fusion and fission) and mitophagy, are critical to mitochondrial function. Fusion allows organelles to share metabolites, proteins, and mitochondrial DNA, promoting complementarity between damaged mitochondria. Fission increases the number of mitochondria to ensure that they are passed on to their offspring during mitosis. Mitophagy is a process of selective removal of excess or damaged mitochondria that helps improve energy metabolism. Cardiometabolic disease is characterized by mitochondrial dysfunction, high production of reactive oxygen species, increased inflammatory response, and low levels of ATP. Cardiometabolic disease is closely related to mitochondrial dynamics and mitophagy. This paper reviewed the mechanisms of mitochondrial dynamics and mitophagy (focus on MFN1, MFN2, OPA1, DRP1, and PINK1 proteins) and their roles in diabetic cardiomyopathy, myocardial infarction, cardiac hypertrophy, heart failure, atherosclerosis, and obesity.
    Keywords:  cardiometabolic disease; diabetic cardiomyopathy; mitochondrial dynamics; mitochondrial fission; mitochondrial fusion; mitophagy; myocardial infarction
    DOI:  https://doi.org/10.3389/fcvm.2022.917135
  4. Clin Genet. 2022 Jul 09.
      Leber hereditary optic neuropathy is a mitochondrial disease mainly due to pathologic mutations in mitochondrial genes related to the respiratory complex I of the oxidative phosphorylation system. Genetic, physiological, and environmental factors modulate the penetrance of these mutations. We report two patients suffering from this disease and harboring a m.15950G>A mutation in the mitochondrial DNA-encoded gene for the threonine transfer RNA. We also provide evidences supporting the pathogenicity of this mutation. This article is protected by copyright. All rights reserved.
    Keywords:  LHON; mtDNA; mutation; tRNA
    DOI:  https://doi.org/10.1111/cge.14189
  5. Mol Genet Metab Rep. 2022 Jun;31 100873
      Isolated long-chain 3-keto-acyl CoA thiolase (LCKAT) deficiency is a rare long-chain fatty acid oxidation disorder caused by mutations in HADHB. LCKAT is part of a multi-enzyme complex called the mitochondrial trifunctional protein (MTP) which catalyzes the last three steps in the long-chain fatty acid oxidation. Until now, only three cases of isolated LCKAT deficiency have been described. All patients developed a severe cardiomyopathy and died before the age of 7 weeks. Here, we describe a newborn with isolated LCKAT deficiency, presenting with neonatal-onset cardiomyopathy, rhabdomyolysis, hypoglycemia and lactic acidosis. Bi-allelic 185G > A (p.Arg62His) and c1292T > C (p.Phe431Ser) mutations were found in HADHB. Enzymatic analysis in both lymphocytes and cultured fibroblasts revealed LCKAT deficiency with a normal long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD, also part of MTP) enzyme activity. Clinically, the patient showed recurrent cardiomyopathy, which was monitored by speckle tracking echocardiography. Subsequent treatment with special low-fat formula, low in long chain triglycerides (LCT) and supplemented with medium chain triglycerides (MCT) and ketone body therapy in (sodium-D,L-3-hydroxybutyrate) was well tolerated and resulted in improved carnitine profiles and cardiac function. Resveratrol, a natural polyphenol that has been shown to increase fatty acid oxidation, was also considered as a potential treatment option but showed no in vitro benefits in the patient's fibroblasts. Even though our patient deceased at the age of 13 months, early diagnosis and prompt initiation of dietary management with addition of sodium-D,L-3-hydroxybutyrate may have contributed to improved cardiac function and a much longer survival when compared to the previously reported cases of isolated LCKAT-deficiency.
    Keywords:  Cardiomyopathy; Fatty acid oxidation disorder; HADHB; Ketones; Long-chain 3-keto-acyl CoA thiolase (LCKAT); MTP; Resveratrol; Speckle-echocardiography
    DOI:  https://doi.org/10.1016/j.ymgmr.2022.100873
  6. Int J Mol Sci. 2022 Jul 05. pii: 7487. [Epub ahead of print]23(13):
      Mitochondrial respiratory chain (MRC) disorders are a complex group of diseases whose diagnosis requires a multidisciplinary approach in which the biochemical investigations play an important role. Initial investigations include metabolite analysis in both blood and urine and the measurement of lactate, pyruvate and amino acid levels, as well as urine organic acids. Recently, hormone-like cytokines, such as fibroblast growth factor-21 (FGF-21), have also been used as a means of assessing evidence of MRC dysfunction, although work is still required to confirm their diagnostic utility and reliability. The assessment of evidence of oxidative stress may also be an important parameter to consider in the diagnosis of MRC function in view of its association with mitochondrial dysfunction. At present, due to the lack of reliable biomarkers available for assessing evidence of MRC dysfunction, the spectrophotometric determination of MRC enzyme activities in skeletal muscle or tissue from the disease-presenting organ is considered the 'Gold Standard' biochemical method to provide evidence of MRC dysfunction. The purpose of this review is to outline a number of biochemical methods that may provide diagnostic evidence of MRC dysfunction in patients.
    Keywords:  FGF21; amino acids; biomarkers; lactate; mitochondrial respiratory chain; organic acids; polarography; pyruvate; spectrophotometric enzyme assay
    DOI:  https://doi.org/10.3390/ijms23137487
  7. Nutrients. 2022 Jul 01. pii: 2752. [Epub ahead of print]14(13):
      Through evolution, eukaryote organisms have developed the ability to use different molecules as independent precursors to generate nicotinamide adenine dinucleotide (NAD+), an essential molecule for life. However, whether these different precursors act in an additive or complementary manner is not truly well understood. Here, we have evaluated how combinations of different NAD+ precursors influence intracellular NAD+ levels. We identified dihydronicotinic acid riboside (NARH) as a new NAD+ precursor in hepatic cells. Second, we demonstrate how NARH, but not any other NAD+ precursor, can act synergistically with nicotinamide riboside (NR) to increase NAD+ levels in cultured cells and in mice. Finally, we demonstrate that the large increase in NAD+ prompted by the combination of these two precursors is due to their chemical interaction and conversion to dihydronicotinamide riboside (NRH). Altogether, this work demonstrates for the first time that NARH can act as a NAD+ precursor in mammalian cells and how different NAD+ precursors can interact and influence each other when co-administered.
    Keywords:  NAD+; dihydronicotinamide riboside; dihydronicotinic acid riboside; nicotinamide; nicotinamide riboside; nicotinic acid; nicotinic acid riboside; vitamin B3
    DOI:  https://doi.org/10.3390/nu14132752
  8. Cells. 2022 Jul 02. pii: 2097. [Epub ahead of print]11(13):
      The best-known hallmarks of Parkinson's disease (PD) are the motor deficits that result from the degeneration of dopaminergic neurons in the substantia nigra. Dopaminergic neurons are thought to be particularly susceptible to mitochondrial dysfunction. As such, for their survival, they rely on the elaborate quality control mechanisms that have evolved in mammalian cells to monitor mitochondrial function and eliminate dysfunctional mitochondria. Mitophagy is a specialized type of autophagy that mediates the selective removal of damaged mitochondria from cells, with the net effect of dampening the toxicity arising from these dysfunctional organelles. Despite an increasing understanding of the molecular mechanisms that regulate the removal of damaged mitochondria, the detailed molecular link to PD pathophysiology is still not entirely clear. Herein, we review the fundamental molecular pathways involved in PINK1/Parkin-mediated and receptor-mediated mitophagy, the evidence for the dysfunction of these pathways in PD, and recently-developed state-of-the art assays for measuring mitophagy in vitro and in vivo.
    Keywords:  PINK1; Parkin; Parkinson’s disease; alpha-syn; mito-Keima; mito-QC; mito-SRAI; mitochondrial quality control; mitophagy; protein quality control; ubiquitin
    DOI:  https://doi.org/10.3390/cells11132097
  9. Nat Rev Mol Cell Biol. 2022 Jul 08.
      Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.
    DOI:  https://doi.org/10.1038/s41580-022-00506-6
  10. Neuropathol Appl Neurobiol. 2022 Jul 05. e12833
      AIMS: Alpers' syndrome is a severe neurodegenerative disease typically caused by bi-allelic variants in the mitochondrial DNA (mtDNA) polymerase gene, POLG, leading to mtDNA depletion. Intractable epilepsy, often with an occipital focus, and extensive neurodegeneration are prominent features of Alpers' syndrome. Mitochondrial oxidative phosphorylation (OXPHOS) is severely impaired with mtDNA depletion and is likely to be a major contributor to the epilepsy and neurodegeneration in Alpers' syndrome. We hypothesised that parvalbumin-positive(+) interneurons, a neuronal class critical for inhibitory regulation of physiological cortical rhythms, would be particularly vulnerable in Alpers' syndrome due to the excessive energy demands necessary to sustain their fast-spiking activity.METHODS: We performed a quantitative neuropathological investigation of inhibitory interneuron subtypes (parvalbumin+, calretinin+, calbindin+, somatostatin interneurons+) in post-mortem neocortex from fourteen Alpers' syndrome patients, five sudden unexpected death in epilepsy (SUDEP) patients (to control for effects of epilepsy) and nine controls.
    RESULTS: We identified a severe loss of parvalbumin+ interneurons and clear evidence of OXPHOS impairment in those that remained. Comparison of regional abundance of interneuron subtypes in control tissues demonstrated enrichment of parvalbumin+ interneurons in the occipital cortex, whilst other subtypes did not exhibit such topographic specificity.
    CONCLUSIONS: These findings suggest the vulnerability of parvalbumin+ interneurons to OXPHOS deficits coupled with the high abundance of parvalbumin+ interneurons in the occipital cortex, are key factors in the aetiology of the occipital-predominant epilepsy that characterises Alpers' syndrome. These findings provide novel insights into Alpers' syndrome neuropathology, with important implications for the development of preclinical models and disease-modifying therapeutics.
    Keywords:  Alpers’ syndrome; POLG; calretinin; inhibitory interneurons; mitochondrial epilepsy; parvalbumin; seizures
    DOI:  https://doi.org/10.1111/nan.12833
  11. Methods. 2022 Jun 30. pii: S1046-2023(22)00152-9. [Epub ahead of print]
      The mitochondrial replisome replicates the 16.6 kb mitochondria DNA (mtDNA). The proper functioning of this multicomponent protein complex is vital for the integrity of the mitochondrial genome. One of the critical protein components of the mitochondrial replisome is the Twinkle helicase, a member of the Superfamily 4 (SF4) helicases. Decades of research has uncovered common themes among SF4 helicases including self-assembly, ATP-dependent translocation, and formation of protein-protein complexes. Some of the molecular details of these processes are still unknown for the mitochondria SF4 helicase, Twinkle. Here, we describe a protocol for expression, purification, and single-particle cryo-electron microscopy of the Twinkle helicase clinical variant, W315L, which resulted in the first high-resolution structure of Twinkle helicase. The methods described here serve as an adaptable protocol to support future high-resolution studies of Twinkle helicase or other SF4 helicases.
    Keywords:  Cryo Electron Microscopy (cryo-EM); Helicase purification; Structural biology; Twinkle Helicase
    DOI:  https://doi.org/10.1016/j.ymeth.2022.06.012
  12. Annu Rev Cell Dev Biol. 2022 Jul 08.
      Mitochondria are traditionally known as the powerhouse of the cell, but their functions extend far beyond energy production. They are vital in cellular and organismal pathways that direct metabolism, stress responses, immunity, and cellular fate. To accomplish these tasks, mitochondria have established networks of both intra- and extracellular communication. Intracellularly, these communication routes comprise direct contacts between mitochondria and other subcellular components as well as indirect vesicle transport of ions, metabolites, and other intracellular messengers. Extracellularly, mitochondria can induce stress responses or other cellular changes that secrete mitochondrial cytokine (mitokine) factors that can travel between tissues as well as respond to immune challenges from extracellular sources. Here we provide a current perspective on the major routes of communication for mitochondrial signaling, including their mechanisms and physiological impact. We also review the major diseases and age-related disorders associated with defects in these signaling pathways. An understanding of how mitochondrial signaling controls cellular homeostasis will bring greater insight into how dysfunctional mitochondria affect health in disease and aging. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 38 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    DOI:  https://doi.org/10.1146/annurev-cellbio-120420-015303
  13. Mol Genet Metab Rep. 2022 Jun;31 100860
      Background: Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) is a rare inherited disease caused by pathogenic variants of HADHA gene. Along with signs common to fatty acid oxidation defects (FAOD), specific retina and heart alterations are observed. Because long-chain fatty acid oxidation is selectively affected, supplementations with short/medium-chain fats represent energetic sources bypassing the enzymatic blockade. Here, we report on an atypical presentation of the disease.Methods: Clinical features were described with medical explorations including ophthalmic and cardiac examination. Biological underlying defects were investigated by measurements of biochemical metabolites and by fluxomic studies of mitochondrial β-oxidation. Whole exome sequencing and molecular validation of variants confirmed the diagnosis.
    Results: The patient has developed at nine years an unlabeled maculopathy, and at 28 years, an acute cardiac decompensation without any premise. Blood individual acylcarnitine analysis showed a rise in hydroxylated long-chain fatty acids and fluxomic studies validated enzyme blockade consistent with LCHADD. Genetic analysis revealed the common p.(Glu510Gln) variant in HADHA, in trans with a novel variant c.1108G > A, p.(Gly370Arg) located in the NAD binding domain. Patient pathology was responsive to triheptanoin supplementation.
    Conclusion: This atypical LCHADD form report should encourage the early assessment of biochemical and genetic testing as a specific management is recommended (combination with fast avoidance, low fat-high carbohydrate diet, medium-even-chain triglycerides or triheptanoin supplementation).
    Keywords:  Atypical maculopathy; Cardiomyopathy; HADHA; LCHAD; Late-onset; Mitochondrial trifunctional protein MTP
    DOI:  https://doi.org/10.1016/j.ymgmr.2022.100860
  14. Cell Biosci. 2022 Jul 06. 12(1): 103
      BACKGROUND: Neurodegenerative diseases encompass an extensive and heterogeneous group of nervous system disorders which are characterized by progressive degeneration and death of neurons. Many lines of evidence suggest the participation of mitochondria dysfunction in these diseases. Mitochondrial phenylalanyl-tRNA synthetase, encoded by FARS2, catalyzes the transfer of phenylalanine to its cognate tRNA for protein synthesis. As a member of mt-aaRSs genes, FARS2 missense homozygous mutation c.424G > T (p.D142Y) found in a Chinese consanguineous family first built the relationship between pure hereditary spastic paraplegia (HSP) and FARS2 gene. More FARS2 variations were subsequently found to cause heterogeneous group of neurologic disorders presenting three main phenotypic manifestations: infantile-onset epileptic mitochondrial encephalopathy, later-onset spastic paraplegia and juvenile onset refractory epilepsy. Studies showed that aminoacylation activity is frequently disrupt in cases with FARS2 mutations, indicating a loss-of-function mechanism. However, the underlying pathogenesis of neuropathy-associated Fars2 deficiency is still largely unknown.RESULTS: Early gestation lethality of global Fars2 knockout mice was observed prior to neurogenesis. The conditional Fars2 knockout-mouse model delayed lethality to late-gestation, resulting in a thinner cortex and an enlarged ventricle which is consist with the MRI results revealing cortical atrophy and reduced cerebral white matter volume in FARS2-deficient patients. Delayed development of neurite outgrowth followed by neuronal apoptosis was confirmed in Fars2-knockdown mouse primary cultured neurons. Zebrafish, in which fars2 was knocked down, exhibited aberrant motor neuron function including reduced locomotor capacity which well restored the spastic paraplegia phenotype of FARS2-deficient patients. Altered mitochondrial protein synthesis and reduced levels of oxidative phosphorylation complexes were detected in Fars2-deficient samples. And thus, reduced ATP, total NAD levels and mitochondrial membrane potential, together with increased ROS production, revealed mitochondrial dysfunction both in vitro and in vivo. Dctn3 is a potential downstream molecule in responds to Fars2 deficient in neurons, which may provide some evidence for the development of pathogenesis study and therapeutic schedule.
    CONCLUSIONS: The Fars2 deficiency genetic models developed in this study cover the typical clinical manifestations in FARS2 patients, and help clarify how neuropathy-associated Fars2 deficiency, by damaging the mitochondrial respiratory chain and impairing mitochondrial function, affects neuronal development and potentiates neuronal cell apoptosis.
    Keywords:  Mitochondrial dysfunction; Mitochondrial phenylalanyl-tRNA synthetase; Neurite outgrowth; Neurondegeneration; Oxidative phosphorylation complexes; Zebrafish model
    DOI:  https://doi.org/10.1186/s13578-022-00838-y
  15. Int J Mol Sci. 2022 Jun 27. pii: 7144. [Epub ahead of print]23(13):
      Long-chain 3-hydroxyacyl-CoA deficiency (LCHADD) and mitochondrial trifunctional protein (MTPD) belong to a group of inherited metabolic diseases affecting the degradation of long-chain chain fatty acids. During metabolic decompensation the incomplete degradation of fatty acids results in life-threatening episodes, coma and death. Despite fast identification at neonatal screening, LCHADD/MTPD present with progressive neurodegenerative symptoms originally attributed to the accumulation of toxic hydroxyl acylcarnitines and energy deficiency. Recently, it has been shown that LCHADD human fibroblasts display a disease-specific alteration of complex lipids. Accumulating fatty acids, due to defective β-oxidation, contribute to a remodeling of several lipid classes including mitochondrial cardiolipins and sphingolipids. In the last years the face of LCHADD/MTPD has changed. The reported dysregulation of complex lipids other than the simple acylcarnitines represents a novel aspect of disease development. Indeed, aberrant lipid profiles have already been associated with other neurodegenerative diseases such as Parkinson's Disease, Alzheimer's Disease, amyotrophic lateral sclerosis and retinopathy. Today, the physiopathology that underlies the development of the progressive neuropathic symptoms in LCHADD/MTPD is not fully understood. Here, we hypothesize an alternative disease-causing mechanism that contemplates the interaction of several factors that acting in concert contribute to the heterogeneous clinical phenotype.
    Keywords:  LCHADD; lipidomics; long-chain fatty acid oxidation disorders; neurodegeneration; sphyngomyelines and ceramides
    DOI:  https://doi.org/10.3390/ijms23137144
  16. Mov Disord. 2022 Jul 06.
      BACKGROUND: Parkinsonian features have been described in patients harboring variants in nuclear genes encoding for proteins involved in mitochondrial DNA maintenance, such as TWNK.OBJECTIVES: The aim was to screen for TWNK variants in an Italian cohort of Parkinson's disease (PD) patients and to assess the occurrence of parkinsonism in patients presenting with TWNK-related autosomal dominant progressive external ophthalmoplegia (TWNK-adPEO).
    METHODS: Genomic DNA of 263 consecutively collected PD patients who underwent diagnostic genetic testing was analyzed with a targeted custom gene panel including TWNK, as well as genes causative of monogenic PD. Genetic and clinical data of 18 TWNK-adPEO patients with parkinsonism were retrospectively analyzed.
    RESULTS: Six of 263 PD patients (2%), presenting either with isolated PD (n = 4) or in combination with bilateral ptosis (n = 2), carried TWNK likely pathogenic variants. Among 18 TWNK-adPEO patients, 5 (28%) had parkinsonism.
    CONCLUSIONS: We show candidate TWNK variants occurring in PD without PEO. This finding will require further confirmatory studies. © 2022 Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
    Keywords:  Parkinson's disease; TWNK; mitochondrial DNA; parkinsonism; twinkle
    DOI:  https://doi.org/10.1002/mds.29139
  17. Hum Mol Genet. 2022 Jul 07. pii: ddac151. [Epub ahead of print]
      NADK2 encodes the mitochondrial form of NAD Kinase, which phosphorylates nicotinamide adenine dinucleotide (NAD). Rare recessive mutations in human NADK2 are associated with a syndromic neurological mitochondrial disease that includes metabolic changes such as hyperlysinemia and 2,4 dienoyl CoA reductase (DECR) deficiency. However, the full pathophysiology resulting from NADK2 deficiency is not known. Here we describe two chemically-induced mouse mutations in Nadk2, S326L and S330P, which cause a severe neuromuscular disease and shorten lifespan. The S330P allele was characterized in detail and shown to have marked denervation of neuromuscular junctions by 5 weeks of age and muscle atrophy by 11 weeks of age. Cerebellar Purkinje cells also showed progressive degeneration in this model. Transcriptome profiling on brain and muscle was performed at early and late disease stages. In addition, metabolomic profiling was performed on brain, muscle, liver, and spinal cord at the same ages, and plasma at 5 weeks. Combined transcriptomic and metabolomic analyses identified hyperlysinemia, DECR deficiency, and generalized metabolic dysfunction in Nadk2 mutant mice, indicating relevance to the human disease. We compared findings from the Nadk model to equivalent RNAseq and metabolomic datasets from a mouse model of infantile neuroaxonal dystrophy, caused by recessive mutations in Pla2g6. This enabled us to identify disrupted biological processes that are common between these mouse models of neurological disease, as well as those processes that are gene-specific. These findings improve our understanding of the pathophysiology of neuromuscular diseases, and describe mouse models that will be useful for future preclinical studies.
    Keywords:  metabolomicsRNAseqneuromuscular diseasemitochondrial diseasePla2g6infantile neuroaxonal dystrophyINADbrain iron accumulationmouse models
    DOI:  https://doi.org/10.1093/hmg/ddac151
  18. Mult Scler. 2022 Jul 05. 13524585221106290
      BACKGROUND: Mitochondrial dysfunction plays an important role in multiple sclerosis (MS) disease progression. Plasma extracellular vesicles are a potential source of novel biomarkers in MS, and some of these are derived from mitochondria and contain functional mitochondrial components.OBJECTIVE: To evaluate the relationship between levels of mitochondrial complex IV and V activity in neuronally enriched extracellular vesicles (NEVs) and brain and retinal atrophy as assessed using serial magnetic resonance imaging (MRI) and optical coherence tomography (OCT).
    METHODS: Our cohort consisted of 48 people with MS. NEVs were immunocaptured from plasma and mitochondrial complex IV and V activity levels were measured. Subjects underwent OCT every 6 months and brain MRI annually. The associations between baseline mitochondrial complex IV and V activities and brain substructure and retinal thickness changes were estimated utilizing linear mixed-effects models.
    RESULTS: We found that higher mitochondrial complex IV activity and lower mitochondrial complex V activity levels were significantly associated with faster whole-brain volume atrophy. Similar results were found with other brain substructures and retinal layer atrophy.
    CONCLUSION: Our results suggest that mitochondrial measures in circulating NEVs could serve as potential biomarkers of disease progression and provide the rationale for larger follow-up longitudinal studies.
    Keywords:  Extracellular vesicles; biomarkers; mitochondrial complexes; multiple sclerosis
    DOI:  https://doi.org/10.1177/13524585221106290
  19. J Biomater Appl. 2022 Jul 05. 8853282221111656
      Mitochondrial dysfunction, characterized by the electron transport chain (ETC) leakage and reduced adenosine tri-phosphate synthesis, occurs primarily due to free radicals -induced mutations in either the mitochondrial deoxyribonucleic acid (mtDNA) or nuclear (n) DNA caused by pathogenic infections, toxicant exposures, adverse drug-effects, or other environmental exposures, leading to secondary dysfunction affecting ischemic, diabetic, cancerous, and degenerative diseases. In these concerns, mitochondria-targeted remedies may include a significant role in the protection and treatment of mitochondrial function to enhance its activity. Coenzyme Q10 pyridinol and pyrimidinol antioxidant analogues and other potent drug-compounds for their multifunctional radical quencher and other anti-toxic activities may take a significant therapeutic effectivity for ameliorating mitochondrial dysfunction. Moreover, the encapsulation of these bioactive ligands-attached potent compounds in vesicular system may enable them a superb biological effective for the treatment of mitochondria-targeted dysfunction-related diseases with least side effects. This review depicts mainly on mitochondrial enzymatic dysfunction and their amelioration by potent drugs with the usages of nanoparticulated delivery system against mitochondria-affected diseases.
    Keywords:  Mitochondrial dysfunction; diseases; drugs; mitochondrial targeting; nanoparticulated delivery system
    DOI:  https://doi.org/10.1177/08853282221111656
  20. Eur J Neurol. 2022 Jul 04.
      BACKGROUND: Tic disorders (TD) are childhood-onset neuropsychiatric disorders characterized by single or multiple sudden, rapid, recurrent, and motor tics and/or vocal tics. Several nuclear genes that involved in mitochondrial functions suggest potential role of mitochondria in tic deficit.METHODS: To evaluate the association of mitochondrial DNA (mtDNA) variants with Tic disorders, we screened the whole mitochondrial genomes in 493 TD patients and 109 age- and sex matched healthy controls using next-generation sequencing technology.
    RESULTS: A total of 1918 mtDNA variants including 1220 variants in patients only, 154 variants in controls only, and 544 variants shared by both cases and controls were identified. We found higher number of overall mtDNA variants in TD patients (P =0.00028). The variant density in MT-ATP6/8 and MT-CYB coding regions had significant difference between TD patients and controls (P=0.0025 and P=0.003, respectively). Furthermore, we observed a significant association of 15 common variants with TD based on additive model, including m.14766C>T, m.14783T>C, m.14905G>A, and m.15301G>A in MT-CYB; m.4769A>G, m.10398A>G, m.12705C>T, and m.12850A>G in MT-ND genes; m.7028C>T in MT-CO1; m.8701A>G in MT-ATP6; two noncoding variants with m.16223C>T, m.5580T>C; and three rRNA variants with m.1438A>G and m.750A>G in RNR1, and m.2352T>C in RNR2.
    CONCLUSIONS: Our data provide the evidence of mtDNA variants associated with tic disorders. The accumulation of the heteroplasmic levels may increase the risk of TD. Replication studies with larger samples are necessary to understand the pathogenesis of TD.
    Keywords:  Tic disorders; association; heteroplasmic; mtDNA; variants
    DOI:  https://doi.org/10.1111/ene.15484
  21. Mol Genet Metab Rep. 2022 Jun;31 100877
      Coenzyme Q10 (CoQ10) is necessary as electron transporter in mitochondrial respiration and other cellular functions. CoQ10 is synthesized by all cells and defects in the synthesis pathway result in primary CoQ10 deficiency that frequently leads to severe mitochondrial disease syndrome. CoQ10 is exceedingly hydrophobic, insoluble, and poorly bioavailable, with the result that dietary CoQ10 supplementation produces no or only minimal relief for patients. We studied a patient from Turkey and identified and characterized a new mutation in the CoQ10 biosynthetic gene COQ7 (c.161G > A; p.Arg54Gln). We find that unexpected neuromuscular pathology can accompany CoQ10 deficiency caused by a COQ7 mutation. We also show that by-passing the need for COQ7 by providing the unnatural precursor 2,4-dihydroxybenzoic acid, as has been proposed, is unlikely to be an effective and safe therapeutic option. In contrast, we show for the first time in human patient cells that the respiratory defect resulting from CoQ10 deficiency is rescued by providing CoQ10 formulated with caspofungin (CF/CoQ). Caspofungin is a clinically approved intravenous fungicide whose surfactant properties lead to CoQ10 micellization, complete water solubilization, and efficient uptake by cells and organs in animal studies. These findings reinforce the possibility of using CF/CoQ in the clinical treatment of CoQ10-deficient patients.
    Keywords:  2,4-dihydroxybenzoic acid; COQ7; CoQ deficiency; CoQ10; Coenzyme Q; Ubiquinone
    DOI:  https://doi.org/10.1016/j.ymgmr.2022.100877
  22. Development. 2022 Oct 15. pii: dev199914. [Epub ahead of print]149(20):
      Leigh syndrome (LS) is a rare, inherited neurometabolic disorder that presents with bilateral brain lesions caused by defects in the mitochondrial respiratory chain and associated nuclear-encoded proteins. We generated human induced pluripotent stem cells (iPSCs) from three LS patient-derived fibroblast lines. Using whole-exome and mitochondrial sequencing, we identified unreported mutations in pyruvate dehydrogenase (GM0372, PDH; GM13411, MT-ATP6/PDH) and dihydrolipoyl dehydrogenase (GM01503, DLD). These LS patient-derived iPSC lines were viable and capable of differentiating into progenitor populations, but we identified several abnormalities in three-dimensional differentiation models of brain development. LS patient-derived cerebral organoids showed defects in neural epithelial bud generation, size and cortical architecture at 100 days. The double mutant MT-ATP6/PDH line produced organoid neural precursor cells with abnormal mitochondrial morphology, characterized by fragmentation and disorganization, and showed an increased generation of astrocytes. These studies aim to provide a comprehensive phenotypic characterization of available patient-derived cell lines that can be used to study Leigh syndrome.
    Keywords:  Brain organoids; Glycolysis; Leigh syndrome; Mitochondria; Neural precursor cells; Neural rosettes; Oxidative phosphorylation; Stem cells
    DOI:  https://doi.org/10.1242/dev.199914
  23. Nat Commun. 2022 Jul 04. 13(1): 3850
      Heart failure with preserved ejection fraction (HFpEF) exhibits a sex bias, being more common in women than men, and we hypothesize that mitochondrial sex differences might underlie this bias. As part of genetic studies of heart failure in mice, we observe that heart mitochondrial DNA levels and function tend to be reduced in females as compared to males. We also observe that expression of genes encoding mitochondrial proteins are higher in males than females in human cohorts. We test our hypothesis in a panel of genetically diverse inbred strains of mice, termed the Hybrid Mouse Diversity Panel (HMDP). Indeed, we find that mitochondrial gene expression is highly correlated with diastolic function, a key trait in HFpEF. Consistent with this, studies of a "two-hit" mouse model of HFpEF confirm that mitochondrial function differs between sexes and is strongly associated with a number of HFpEF traits. By integrating data from human heart failure and the mouse HMDP cohort, we identify the mitochondrial gene Acsl6 as a genetic determinant of diastolic function. We validate its role in HFpEF using adenoviral over-expression in the heart. We conclude that sex differences in mitochondrial function underlie, in part, the sex bias in diastolic function.
    DOI:  https://doi.org/10.1038/s41467-022-31544-5
  24. Cell Stem Cell. 2022 Jul 07. pii: S1934-5909(22)00253-3. [Epub ahead of print]29(7): 1119-1134.e7
      Hematopoietic stem cells (HSCs) adapt their metabolism to maintenance and proliferation; however, the mechanism remains incompletely understood. Here, we demonstrated that homeostatic HSCs exhibited high amino acid (AA) catabolism to reduce cellular AA levels, which activated the GCN2-eIF2α axis, a protein synthesis inhibitory checkpoint to restrain protein synthesis for maintenance. Furthermore, upon proliferation conditions, HSCs enhanced mitochondrial oxidative phosphorylation (OXPHOS) for higher energy production but decreased AA catabolism to accumulate cellular AAs, which inactivated the GCN2-eIF2α axis to increase protein synthesis and coupled with proteotoxic stress. Importantly, GCN2 deletion impaired HSC function in repopulation and regeneration. Mechanistically, GCN2 maintained proteostasis and inhibited Src-mediated AKT activation to repress mitochondrial OXPHOS in HSCs. Moreover, the glycolytic metabolite, NAD+ precursor nicotinamide riboside (NR), accelerated AA catabolism to activate GCN2 and sustain the long-term function of HSCs. Overall, our study uncovered direct links between metabolic alterations and translation control in HSCs during homeostasis and proliferation.
    Keywords:  GCN2; amino acid; hematopoietic stem cells; metabolism; nicotinamide riboside; oxidative phosphorylation; protein translation; proteostasis
    DOI:  https://doi.org/10.1016/j.stem.2022.06.004
  25. Elife. 2022 Jul 08. pii: e76095. [Epub ahead of print]11
      Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.
    Keywords:  S. cerevisiae; cell biology; genetics; genomics
    DOI:  https://doi.org/10.7554/eLife.76095
  26. Hum Mol Genet. 2022 Jul 04. pii: ddac083. [Epub ahead of print]
      Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) is a mitochondrial protein that plays important roles in cristae structure, oxidative phosphorylation, and apoptosis. Multiple mutations in CHCHD2 have been associated with Lewy body disorders (LBDs), such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB), with the CHCHD2-T61I mutation being the most widely studied. However, at present, only CHCHD2 knockout or CHCHD2/CHCHD10 double knockout mouse models have been investigated. They do not recapitulate the pathology seen in patients with CHCHD2 mutations. We generated the first transgenic mouse model expressing the human PD-linked CHCHD2-T61I mutation driven by the mPrP promoter. We show that CHCHD2-T61I Tg mice exhibit perinuclear mitochondrial aggregates, neuroinflammation, and have impaired long-term synaptic plasticity associated with synaptic dysfunction. Dopaminergic neurodegeneration, a hallmark of PD, is also observed along with α-synuclein pathology. Significant motor dysfunction is seen with no changes in learning and memory at one year of age. A minor proportion of the CHCHD2-T61I Tg mice (~10%) show a severe motor phenotype consistent with human Pisa Syndrome, an atypical PD phenotype. Unbiased proteomics analysis reveals surprising increases in many insoluble proteins predominantly originating from mitochondria and perturbing multiple canonical biological pathways as assessed by Ingenuity Pathway Analysis, including neurodegenerative disease-associated proteins such as tau, cofilin, SOD1, and DJ-1. Overall, CHCHD2-T61I Tg mice exhibit pathological and motor changes associated with LBDs, indicating that this model successfully captures phenotypes seen in human LBD patients with CHCHD2 mutations, and demonstrates changes in neurodegenerative disease-associated proteins, which delineates relevant pathological pathways for further investigation.
    DOI:  https://doi.org/10.1093/hmg/ddac083
  27. Nat Commun. 2022 Jul 08. 13(1): 3947
      Succinate dehydrogenase, which is known as mitochondrial complex II, has proven to be a fascinating machinery, attracting renewed and increased interest in its involvement in human diseases. Herein, we find that succinate dehydrogenase assembly factor 4 (SDHAF4) is downregulated in cardiac muscle in response to pathological stresses and in diseased hearts from human patients. Cardiac loss of Sdhaf4 suppresses complex II assembly and results in subunit degradation and complex II deficiency in fetal mice. These defects are exacerbated in young adults with globally impaired metabolic capacity and activation of dynamin-related protein 1, which induces excess mitochondrial fission and mitophagy, thereby causing progressive dilated cardiomyopathy and lethal heart failure in animals. Targeting mitochondria via supplementation with fumarate or inhibiting mitochondrial fission improves mitochondrial dynamics, partially restores cardiac function and prolongs the lifespan of mutant mice. Moreover, the addition of fumarate is found to dramatically improve cardiac function in myocardial infarction mice. These findings reveal a vital role for complex II assembly in the development of dilated cardiomyopathy and provide additional insights into therapeutic interventions for heart diseases.
    DOI:  https://doi.org/10.1038/s41467-022-31548-1
  28. Life Sci. 2022 Jul 01. pii: S0024-3205(22)00453-2. [Epub ahead of print] 120753
      Gastroduodenal inflammation and ulcerative injuries are increasing due to expanding socio-economic stress, unhealthy food habits-lifestyle, smoking, alcoholism and usage of medicines like non-steroidal anti-inflammatory drugs. In fact, gastrointestinal (GI) complications, associated with the prevailing COVID-19 pandemic, further, poses a challenge to global healthcare towards safeguarding the GI tract. Emerging evidences have discretely identified mitochondrial dysfunctions as common etiological denominators in diseases. However, it is worth realizing that mitochondrial dysfunctions are not just consequences of diseases. Rather, damaged mitochondria severely aggravate the pathogenesis thereby qualifying as perpetrable factors worth of prophylactic and therapeutic targeting. Oxidative and nitrosative stress due to endogenous and exogenous stimuli triggers mitochondrial injury causing production of mitochondrial damage associated molecular patterns (mtDAMPs), which, in a feed-forward loop, inflicts inflammatory tissue damage. Mitochondrial structural dynamics and mitophagy are crucial quality control parameters determining the extent of mitopathology and disease outcomes. Interestingly, apart from endogenous factors, mitochondria also crosstalk and in turn get detrimentally affected by gut pathobionts colonized during luminal dysbiosis. Although mitopathology is documented in various pre-clinical/clinical studies, a comprehensive account appreciating the mitochondrial basis of GI mucosal pathologies is largely lacking. Here we critically discuss the molecular events impinging on mitochondria along with the interplay of mitochondria-derived factors in fueling mucosal pathogenesis. We specifically emphasize on the potential role of aberrant mitochondrial dynamics, anomalous mitophagy, mitochondrial lipoxidation and ferroptosis as emerging regulators of GI mucosal pathogenesis. We finally discuss about the prospect of mitochondrial targeting for next-generation drug discovery against GI disorders.
    Keywords:  COVID-19; Inflammation; Inflammatory bowel disease; Mitochondria targeted antioxidants; Mitochondrial oxidative stress; Peptic ulcer
    DOI:  https://doi.org/10.1016/j.lfs.2022.120753
  29. Cell Mol Life Sci. 2022 Jul 06. 79(8): 401
      Machado-Joseph disease (MJD) is characterized by a pathological expansion of the polyglutamine (polyQ) tract within the ataxin-3 protein. Despite its primarily cytoplasmic localization, polyQ-expanded ataxin-3 accumulates in the nucleus and forms intranuclear aggregates in the affected neurons. Due to these histopathological hallmarks, the nucleocytoplasmic transport machinery has garnered attention as an important disease relevant mechanism. Here, we report on MJD cell model-based analysis of the nuclear transport receptor karyopherin subunit beta-1 (KPNB1) and its implications in the molecular pathogenesis of MJD. Although directly interacting with both wild-type and polyQ-expanded ataxin-3, modulating KPNB1 did not alter the intracellular localization of ataxin-3. Instead, overexpression of KPNB1 reduced ataxin-3 protein levels and the aggregate load, thereby improving cell viability. On the other hand, its knockdown and inhibition resulted in the accumulation of soluble and insoluble ataxin-3. Interestingly, the reduction of ataxin-3 was apparently based on protein fragmentation independent of the classical MJD-associated proteolytic pathways. Label-free quantitative proteomics and knockdown experiments identified mitochondrial protease CLPP as a potential mediator of the ataxin-3-degrading effect induced by KPNB1. We confirmed reduction of KPNB1 protein levels in MJD by analyzing two MJD transgenic mouse models and induced pluripotent stem cells (iPSCs) derived from MJD patients. Our results reveal a yet undescribed regulatory function of KPNB1 in controlling the turnover of ataxin-3, thereby highlighting a new potential target of therapeutic value for MJD.
    Keywords:  Ataxin-3; Karyopherins; Mitochondrial protease CLPP; Polyglutamine diseases; Proteolysis; Spinocerebellar ataxia type 3
    DOI:  https://doi.org/10.1007/s00018-022-04372-5
  30. Mol Genet Metab. 2022 Jun 13. pii: S1096-7192(22)00338-9. [Epub ahead of print]
      Friedreich Ataxia (FA) is a rare and often fatal autosomal recessive disease in which a mitochondrial protein, frataxin (FXN), is severely reduced in all tissues. With loss of FXN, mitochondrial metabolism is severely disrupted. Multiple therapeutic approaches are in development, but a key limitation is the lack of biomarkers reflecting the activity of FXN in a timely fashion. We predicted this dysregulated metabolism would present a unique metabolite profile in blood of FA patients versus Controls (Con). Plasma from 10 FA and 11 age and sex matched Con subjects was analyzed by targeted mass spectrometry and untargeted NMR. This combined approach yielded quantitative measurements for 540 metabolites and found 59 unique metabolites (55 from MS and 4 from NMR) that were significantly different between cohorts. Correlation-based network analysis revealed several clusters of pathway related metabolites including a cluster associated with one‑carbon (1C) metabolism composed of formate, sarcosine, hypoxanthine, and homocysteine. Receiver operator characteristics analyses demonstrated an excellent ability to discriminate between Con and FA with AUC values >0.95. These results are the first reported metabolomic analyses of human patients with FA. The metabolic perturbations, especially those related to 1C metabolism, may serve as a valuable biomarker panel of disease progression and response to therapy. The identification of dysregulated 1C metabolism may also inform the search for new therapeutic targets related to this pathway.
    Keywords:  Biomarkers; Friedreich Ataxia; Metabolomics; One‑carbon metabolism
    DOI:  https://doi.org/10.1016/j.ymgme.2022.06.002
  31. Biochim Biophys Acta Mol Basis Dis. 2022 Jul 02. pii: S0925-4439(22)00152-1. [Epub ahead of print] 166481
      Mitochondrial-derived reactive oxygen species are important as antimicrobial agents and redox signals in pro-inflammatory macrophages. Macrophages produce superoxide in response to the TLR4 ligand LPS. However, the mechanism of LPS-induced superoxide generation is not fully understood. Superoxide is produced at complex I and complex III of the electron transport chain. Production of superoxide at either of these sites is highly dependent on the metabolic state of the cell which is dramatically altered by TLR4-induced metabolic reprogramming. This review will outline how metabolism impacts superoxide production in LPS-activated macrophages downstream of TLR4 signalling and address outstanding questions in this field.
    Keywords:  Complex I; Macrophages; Metabolism; Mitochondria; Reverse electron transport; Superoxide
    DOI:  https://doi.org/10.1016/j.bbadis.2022.166481
  32. Nat Commun. 2022 Jul 07. 13(1): 3775
      Mitofusins reside on the outer mitochondrial membrane and regulate mitochondrial fusion, a physiological process that impacts diverse cellular processes. Mitofusins are activated by conformational changes and subsequently oligomerize to enable mitochondrial fusion. Here, we identify small molecules that directly increase or inhibit mitofusins activity by modulating mitofusin conformations and oligomerization. We use these small molecules to better understand the role of mitofusins activity in mitochondrial fusion, function, and signaling. We find that mitofusin activation increases, whereas mitofusin inhibition decreases mitochondrial fusion and functionality. Remarkably, mitofusin inhibition also induces minority mitochondrial outer membrane permeabilization followed by sub-lethal caspase-3/7 activation, which in turn induces DNA damage and upregulates DNA damage response genes. In this context, apoptotic death induced by a second mitochondria-derived activator of caspases (SMAC) mimetic is potentiated by mitofusin inhibition. These data provide mechanistic insights into the function and regulation of mitofusins as well as small molecules to pharmacologically target mitofusins.
    DOI:  https://doi.org/10.1038/s41467-022-31324-1
  33. Int J Mol Sci. 2022 Jun 30. pii: 7327. [Epub ahead of print]23(13):
      Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells. Transient VARS2 loss-of-function was induced in zebrafish embryos using Morpholinos. The enzymatic activity of VARS2 was measured in VARS2-depleted cells via northern blot. Heterozygous VARS2 knockout was established in HEK293A cells using CRISPR/Cas9 technology. BN-PAGE and SDS-PAGE were used to investigate electron transport chain (ETC) complexes, and the oxygen consumption rate and extracellular acidification rate were measured using a Seahorse XFe96 Analyzer. The activation of the integrated stress response (ISR) and possible disruptions in mitochondrial fatty acid oxidation (FAO) were explored using RT-qPCR and western blot. Zebrafish embryos with transient VARS2 loss-of-function showed features of heart failure as well as indications of CNS and skeletal muscle involvements. The enzymatic activity of VARS2 was significantly reduced in VARS2-depleted cells. Heterozygous VARS2-knockout cells showed a rearrangement of ETC complexes in favor of complexes III2, III2 + IV, and supercomplexes without significant respiratory chain deficiencies. These cells also showed the enhanced activation of the ISR, as indicated by increased eIF-2α phosphorylation and a significant increase in the transcript levels of ATF4, ATF5, and DDIT3 (CHOP), as well as disruptions in FAO. The activation of the ISR and disruptions in mitochondrial FAO may underlie the adaptive changes in VARS2-depleted cells.
    Keywords:  VARS2; heart failure; integrated stress response; mitochondrial FAO
    DOI:  https://doi.org/10.3390/ijms23137327
  34. Endocr Metab Immune Disord Drug Targets. 2022 Jul 01.
      BACKGROUND: Mitochondrial morphology reversibly changes between division and fusion. As these changes (mitochondrial dynamics) reflect the cellular condition, they are one of the simplest indicators of cell state and predictors of cell fate. However, it is currently difficult to classify them using a simple and objective method.OBJECTIVE: The present study aimed to evaluate mitochondrial morphology using Deep Learning (DL) technique.
    METHODS: Mitochondrial images stained by MitoTracker were acquired from HeLa and MC3T3-E1 cells using fluorescent microscopy and visually classified into four groups based on fission or fusion. The intra- and inter-rater reliabilities for visual classification were excellent [(ICC(1,3), 0.961 for rater 1; and 0.981 for rater 2) and ICC(1,3), respectively]. The images were divided into test and train images, and a 50-layer ResNet CNN architecture (ResNet-50) using MATLAB software was used to train the images. The datasets were trained five times based on five-fold cross-validation.
    RESULT: The mean of the overall accuracy for classifying mitochondrial morphology was 0.73±0.10 in HeLa. For the classification of mixed images containing two types of cell lines, the overall accuracy using mixed images of both cell lines for training was higher (0.74±0.01) than that using different cell lines for training.
    CONCLUSION: We developed a classifier to categorize mitochondrial morphology using DL.
    Keywords:  ResNet.; deep leaning; fission; fusion; mitochondrial dynamics; mitochondrial morphology
    DOI:  https://doi.org/10.2174/1871530322666220701093644
  35. Int J Mol Sci. 2022 Jun 30. pii: 7280. [Epub ahead of print]23(13):
      Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world's population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
    Keywords:  liver; mitochondrial dysfunction; mitophagy; nonalcoholic fatty liver disease; β-oxidation
    DOI:  https://doi.org/10.3390/ijms23137280