bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2022–01–09
23 papers selected by
Catalina Vasilescu, University of Helsinki



  1. BMC Biol. 2022 Jan 07. 20(1): 12
       BACKGROUND: The establishment and maintenance of functional neural connections relies on appropriate distribution and localization of mitochondria in neurites, as these organelles provide essential energy and metabolites. In particular, mitochondria are transported to axons and support local energy production to maintain energy-demanding neuronal processes including axon branching, growth, and regeneration. Additionally, local protein synthesis is required for structural and functional changes in axons, with nuclear-encoded mitochondrial mRNAs having been found localized in axons. However, it remains unclear whether these mRNAs are locally translated and whether the potential translated mitochondrial proteins are involved in the regulation of mitochondrial functions in axons. Here, we aim to further understand the purpose of such compartmentalization by focusing on the role of mitochondrial initiation factor 3 (mtIF3), whose nuclear-encoded transcripts have been shown to be present in axonal growth cones.
    RESULTS: We demonstrate that brain-derived neurotrophic factor (BDNF) induces local translation of mtIF3 mRNA in axonal growth cones. Subsequently, mtIF3 protein is translocated into axonal mitochondria and promotes mitochondrial translation as assessed by our newly developed bimolecular fluorescence complementation sensor for the assembly of mitochondrial ribosomes. We further show that BDNF-induced axonal growth requires mtIF3-dependent mitochondrial translation in distal axons.
    CONCLUSION: We describe a previously unknown function of mitochondrial initiation factor 3 (mtIF3) in axonal protein synthesis and development. These findings provide insight into the way neurons adaptively control mitochondrial physiology and axonal development via local mtIF3 translation.
    Keywords:  Axon development; Bimolecular fluorescence complementation; Local translation; Mitochondria; Mitochondrial translation
    DOI:  https://doi.org/10.1186/s12915-021-01215-w
  2. iScience. 2022 Jan 21. 25(1): 103574
      Heart disease is the leading cause of death with no method to repair damaged myocardium due to the limited proliferative capacity of adult cardiomyocytes. Curiously, mouse neonates and zebrafish can regenerate their hearts via cardiomyocyte de-differentiation and proliferation. However, a molecular mechanism of why these cardiomyocytes can re-enter cell cycle is poorly understood. Here, we identify a unique metabolic state that primes adult zebrafish and neonatal mouse ventricular cardiomyocytes to proliferate. Zebrafish and neonatal mouse hearts display elevated glutamine levels, predisposing them to amino-acid-driven activation of TOR, and that TOR activation is required for zebrafish cardiomyocyte regeneration in vivo. Through a multi-omics approach with cellular validation we identify metabolic and mitochondrial changes during the first week of regeneration. These data suggest that regeneration of zebrafish myocardium is driven by metabolic remodeling and reveals a unique metabolic regulator, TOR-primed state, in which zebrafish and mammalian cardiomyocytes are regeneration competent.
    Keywords:  Biological sciences; Cell biology; Tissue Engineering
    DOI:  https://doi.org/10.1016/j.isci.2021.103574
  3. ACS Biomater Sci Eng. 2022 Jan 03.
      Mitochondria play an essential role in cellular metabolism and generate energy in cells. To support these functions, several proteins are encoded in the mitochondrial DNA (mtDNA). The mutation of mtDNA causes mitochondrial dysfunction and ultimately results in a variety of inherited diseases. To date, gene delivery systems targeting mitochondria have been developed to ameliorate mtDNA mutations. However, applications of these strategies in mitochondrial gene therapy are still being explored and optimized. Thus, from this perspective, we herein highlight recent mitochondria-targeting strategies for gene therapy and discuss future directions for effective mitochondria-targeted gene delivery.
    Keywords:  gene therapy; mitochondria; mitochondria-targeting peptides; organelle targeting
    DOI:  https://doi.org/10.1021/acsbiomaterials.1c01114
  4. Mol Omics. 2022 Jan 04.
      MELAS (mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes) is a progressive neurodegenerative disease caused by pathogenic mitochondrial DNA variants. The pathogenic mechanism of MELAS remains enigmatic due to the exceptional clinical heterogeneity and the obscure genotype-phenotype correlation among MELAS patients. To gain insights into the pathogenic signature of MELAS, we designed a comprehensive strategy integrating proteomics and metabolomics in patient-derived dermal fibroblasts harboring the ultra-rare MELAS pathogenic variant m.14453G>A, specifically affecting the mitochondrial respiratory complex I. Global proteomics was achieved by data-dependent acquisition (DDA) and verified by data-independent acquisition (DIA) using both Spectronaut and the recently launched MaxDIA platforms. Comprehensive metabolite coverage was achieved for both polar and nonpolar metabolites in both reverse phase and HILIC LC-MS/MS analyses. Our proof-of-principle MELAS study with multi-omics integration revealed OXPHOS dysregulation with a predominant deficiency of complex I subunits, as well as alterations in key bioenergetic pathways, glycolysis, tricarboxylic acid cycle, and fatty acid β-oxidation. The most clinically relevant discovery is the downregulation of the arginine biosynthesis pathway, likely due to blocked argininosuccinate synthase, which is congruent with the MELAS cardinal symptom of stroke-like episodes and its current treatment by arginine infusion. In conclusion, we demonstrated an integrated proteomic and metabolomic strategy for patient-derived fibroblasts, which has great clinical potential to discover therapeutic targets and design personalized interventions after validation with a larger patient cohort in the future.
    DOI:  https://doi.org/10.1039/d1mo00416f
  5. Front Cell Dev Biol. 2021 ;9 795838
      The regulatory role of actin cytoskeleton on mitochondrial function is a growing research field, but the underlying molecular mechanisms remain poorly understood. Specific actin-binding proteins (ABPs), such as Gelsolin, have also been shown to participate in the pathophysiology of mitochondrial OXPHOS disorders through yet to be defined mechanisms. In this mini-review, we will summarize the experimental evidence supporting the fundamental roles of actin cytoskeleton and ABPs on mitochondrial trafficking, dynamics, biogenesis, metabolism and apoptosis, with a particular focus on Gelsolin involvement in mitochondrial disorders. The functional interplay between the actin cytoskeleton, ABPs and mitochondrial membranes for the regulation of cellular homeostasis thus emerges as a new exciting field for future research and therapeutic approaches.
    Keywords:  OXPHOS system; actin cytoskeleton; gelsolin; mitochondria; mitochondrial disease
    DOI:  https://doi.org/10.3389/fcell.2021.795838
  6. Mol Genet Metab. 2021 Dec 08. pii: S1096-7192(21)01174-4. [Epub ahead of print]
      Several studies have shown serum fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) levels are elevated in patients with mitochondrial disease (MD) where myopathy is a feature. In this study we investigated the utility of FGF21 and GDF15 as biomarkers for MD in a phenotypically and genotypically diverse pediatric cohort with suspected MD against a panel of healthy controls and non-mitochondrial disease controls with some overlapping clinical features. Serum was collected from 56 children with MD, 104 children with non-mitochondrial disease (27 neuromuscular, 26 cardiac, 21 hepatic, 30 renal) and 30 pediatric controls. Serum FGF21 and GDF15 concentrations were measured using ELISA, and their ability to detect MD was determined. Median FGF21 and GDF15 serum concentrations were elevated 17-fold and 3-fold respectively in pediatric MD patients compared to the healthy control group. Non-mitochondrial disease controls had elevated serum GDF15 concentrations while FGF21 concentrations were in the normal range. Elevation of GDF15 in a range of non-mitochondrial pediatric disorders limits its use as a MD biomarker. FGF21 was elevated in MD patients with a spectrum of clinical phenotypes, including those without myopathy. Serum FGF21 had an area under the receiver operating characteristic curve of 0.87, indicating good ability to discriminate between pediatric MD and healthy and non-mitochondrial disease controls. Triaging of pediatric MD patients by clinical phenotyping and serum FGF21 testing, followed by massively parallel sequencing, may enable more rapid diagnosis of pediatric MD.
    Keywords:  Biomarker; Diagnosis; FGF21; GDF15; Mitochondrial disease; Pediatric
    DOI:  https://doi.org/10.1016/j.ymgme.2021.12.001
  7. Hum Hered. 2022 Jan 06.
       OBJECTIVES: Dilated cardiomyopathy (DCM) is a complex cardiovascular disease with unknown etiology. Although nuclear genes play active roles in DCM, mitochondrial dysfunction was believed to be involved in the pathogenesis of DCM. The objective of this study is to analysis the association between mitochondrial tRNA (mt-tRNA) mutations and DCM.
    MATERIAL AND METHODS: We performed a mutational analysis of mt-tRNA genes in a cohort of 318 patients with DCM and 200 age- and gender-matched control subjects. To further assess their pathogenicity, phylogenetic analysis and mitochondrial functions including mtDNA copy number, ATP and ROS were analyzed.
    RESULTS: 7 possible pathogenic mutations: MT-TL1 3302A>G, MT-TI 4295A>G, MT-TM 4435A>G, MT-TA 5655T>C, MT-TH 12201T>C, MT-TE 14692A>G and MT-TT 15927G>A were identified in DCM group but absent in controls. These mutations occurred at extremely conserved nucleotides of corresponding tRNAs, and led to the failure in tRNAs metabolism. Moreover, a significant reduction in ATP and mtDNA copy number, whereas a markedly increased in ROS level were observed in polymononuclear leukocytes (PMNs) derived from the DCM patients carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for DCM.
    CONCLUSIONS: Our data indicated that mt-tRNA mutations may be the molecular basis for DCM, which shaded novel insight into the pathophysiology of DCM that was manifestated by mitochondrial dysfunction.
    DOI:  https://doi.org/10.1159/000521615
  8. FEBS J. 2022 Jan 05.
      Nek4 is a serine/threonine kinase which has been implicated in primary cilia stabilization, DNA damage response, autophagy and epithelial-to-mesenchymal transition. The role of Nek4 in cancer cell survival and chemotherapy resistance has also been shown. However, the precise mechanisms by which Nek4 operates remain to be elucidated. Here, we show that Nek4 overexpression activates mitochondrial respiration coupled to ATP production, which is paralleled by increased mitochondrial membrane potential, and resistance to mitochondrial DNA damage. Congruently, Nek4 depletion reduced mitochondrial respiration and mtDNA integrity. Nek4 deficiency caused mitochondrial elongation, probably via reduced activity of the fission protein DRP1. In Nek4 overexpressing cells the increase in mitochondrial fission was concomitant to enhanced phosphorylation of DRP1 and Erk1/2 proteins, and the effects on mitochondrial respiration were abolished in the presence of a DRP1 inhibitor. This study shows Nek4 as a novel regulator of mitochondrial function that may explain the joint appearance of high mitochondrial respiration and mitochondrial fragmentation.
    Keywords:  DRP1; Nek4; fission; mitochondrial function
    DOI:  https://doi.org/10.1111/febs.16343
  9. Autophagy. 2022 Jan 05. 1-16
      Barth syndrome (BTHS) is an X-linked genetic disorder caused by mutations in the TAFAZZIN/Taz gene which encodes a transacylase required for cardiolipin remodeling. Cardiolipin is a mitochondrial signature phospholipid that plays a pivotal role in maintaining mitochondrial membrane structure, respiration, mtDNA biogenesis, and mitophagy. Mutations in the TAFAZZIN gene deplete mature cardiolipin, leading to mitochondrial dysfunction, dilated cardiomyopathy, and premature death in BTHS patients. Currently, there is no effective treatment for this debilitating condition. In this study, we showed that TAFAZZIN deficiency caused hyperactivation of MTORC1 signaling and defective mitophagy, leading to accumulation of autophagic vacuoles and dysfunctional mitochondria in the heart of Tafazzin knockdown mice, a rodent model of BTHS. Consequently, treatment of TAFAZZIN knockdown mice with rapamycin, a potent inhibitor of MTORC1, not only restored mitophagy, but also mitigated mitochondrial dysfunction and dilated cardiomyopathy. Taken together, these findings identify MTORC1 as a novel therapeutic target for BTHS, suggesting that pharmacological restoration of mitophagy may provide a novel treatment for BTHS.Abbreviations: BTHS: Barth syndrome; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CL: cardiolipin; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; KD: knockdown; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; LV: left ventricle; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; OCR: oxygen consumption rate; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; qRT-PCR: quantitative real-time polymerase chain reaction; RPS6KB/S6K: ribosomal protein S6 kinase beta; SQSTM1/p62: sequestosome 1; TLCL: tetralinoleoyl cardiolipin; WT: wild-type.
    Keywords:  BTHS; MTORC1; TAFAZZIN; cardiolipin; mitophagy; rapamycin
    DOI:  https://doi.org/10.1080/15548627.2021.2020979
  10. Mol Biol Cell. 2022 Jan 05. mbcE21120610T
      Positioning organelles at the right place and time is critical for their function and inheritance. In budding yeast, mitochondrial and nuclear positioning require the anchoring of mitochondria and dynein to the cell cortex by clusters of Num1. We have previously shown that mitochondria drive the assembly of cortical Num1 clusters, which then serve as anchoring sites for mitochondria and dynein. When mitochondrial inheritance is inhibited, mitochondrial-driven assembly of Num1 in buds is disrupted and defects in dynein-mediated spindle positioning are observed. Using a structure-function approach to dissect the mechanism of mitochondria-dependent dynein anchoring, we found the EF hand-like motif (EFLM) of Num1 and its ability to bind calcium are required to bias dynein anchoring on mitochondria-associated Num1 clusters. Consistently, when the EFLM is disrupted, we no longer observe defects in dynein activity following inhibition of mitochondrial inheritance. Thus, the Num1 EFLM functions to bias dynein anchoring and activity in nuclear inheritance subsequent to mitochondrial inheritance. We hypothesize that this hierarchical integration of organelle positioning pathways by the Num1 EFLM contributes to the regulated order of organelle inheritance during the cell cycle.
    DOI:  https://doi.org/10.1091/mbc.E21-12-0610-T
  11. EMBO Rep. 2022 Jan 07. e48754
      Mitochondria are unavoidably subject to organellar stress resulting from exposure to a range of reactive molecular species. Consequently, cells operate a poorly understood quality control programme of mitophagy to facilitate elimination of dysfunctional mitochondria. Here, we used a model stressor, deferiprone (DFP), to investigate the molecular basis for stress-induced mitophagy. We show that mitochondrial fission 1 protein (Fis1) is required for DFP-induced mitophagy and that Fis1 is SUMOylated at K149, an amino acid residue critical for Fis1 mitochondrial localization. We find that DFP treatment leads to the stabilization of the SUMO protease SENP3, which is mediated by downregulation of the E3 ubiquitin (Ub) ligase CHIP. SENP3 is responsible for Fis1 deSUMOylation and depletion of SENP3 abolishes DFP-induced mitophagy. Furthermore, preventing Fis1 SUMOylation by conservative K149R mutation enhances Fis1 mitochondrial localization. Critically, expressing a Fis1 K149R mutant restores DFP-induced mitophagy in SENP3-depleted cells. Thus, we propose a model in which SENP3-mediated deSUMOylation facilitates Fis1 mitochondrial localization to underpin stress-induced mitophagy.
    Keywords:  Fis1; SENP3; SUMO; mitophagy; organellar stress
    DOI:  https://doi.org/10.15252/embr.201948754
  12. J Child Neurol. 2022 Jan 05. 8830738211067065
       BACKGROUND: POLG pathogenic variants are the commonest single-gene cause of inherited mitochondrial disease. However, the data on clinicogenetic associations in POLG-related disorders are sparse. This study maps the clinicogenetic spectrum of POLG-related disorders in the pediatric population.
    METHODS: Individuals were recruited across 6 centers in India. Children diagnosed between January 2015 and August 2020 with pathogenic or likely pathogenic POLG variants and age of onset <15 years were eligible. Phenotypically, patients were categorized into Alpers-Huttenlocher syndrome; myocerebrohepatopathy syndrome; myoclonic epilepsy, myopathy, and sensory ataxia; ataxia-neuropathy spectrum; Leigh disease; and autosomal dominant / recessive progressive external ophthalmoplegia.
    RESULTS: A total of 3729 genetic reports and 4256 hospital records were screened. Twenty-two patients with pathogenic variants were included. Phenotypically, patients were classifiable into Alpers-Huttenlocher syndrome (8/22; 36.4%), progressive external ophthalmoplegia (8/22; 36.4%), Leigh disease (2/22; 9.1%), ataxia-neuropathy spectrum (2/22; 9.1%), and unclassified (2/22; 9.1%). The prominent clinical manifestations included developmental delay (n = 14; 63.7%), neuroregression (n = 14; 63.7%), encephalopathy (n = 11; 50%), epilepsy (n = 11; 50%), ophthalmoplegia (n = 8; 36.4%), and liver dysfunction (n = 8; 36.4%). Forty-four pathogenic variants were identified at 13 loci, and these were clustered at exonuclease (18/44; 40.9%), linker (13/44; 29.5%), polymerase (10/44; 22.7%), and N-terminal domains (3/44; 6.8%). Genotype-phenotype analysis suggested that serious outcomes including neuroregression (odds ratio [OR] 11, 95% CI 2.5, 41), epilepsy (OR 9, 95% CI 2.4, 39), encephalopathy (OR 5.7, 95% CI 1.4, 19), and hepatic dysfunction (OR 4.6, 95% CI 21.3, 15) were associated with at least 1 variant involving linker or polymerase domain.
    CONCLUSIONS: We describe the clinical subgroups and their associations with different POLG domains. These can aid in the development of follow-up and management strategies of presymptomatic individuals.
    Keywords:  Alpers; Leigh; mitochondrial disease; mtDNA depletion; ophthalmoplegia
    DOI:  https://doi.org/10.1177/08830738211067065
  13. iScience. 2021 Dec 17. 24(12): 103484
      Brain development is a highly orchestrated process requiring spatiotemporally regulated mitochondrial dynamics. Drp1, a key molecule in the mitochondrial fission machinery, undergoes various post-translational modifications including conjugation to the small ubiquitin-like modifier (SUMO). However, the functional significance of SUMOylation/deSUMOylation on Drp1 remains controversial. SUMO-specific protease 5 (Senp5L) catalyzes the deSUMOylation of Drp1. We revealed that a splicing variant of Senp5L, Senp5S, which lacks peptidase activity, prevents deSUMOylation of Drp1 by competing against other Senps. The altered SUMOylation level of Drp1 induced by Senp5L/5S affects mitochondrial morphology probably through controlling Drp1 ubiquitination and tubulation of the endoplasmic reticulum. A dynamic SUMOylation/deSUMOylation balance controls neuronal polarization and migration during the development of the cerebral cortex. These findings suggest a novel role of post-translational modification, in which deSUMOylation enzyme isoforms competitively regulate mitochondrial dynamics via Drp1 SUMOylation levels, in a tightly controlled process of neuronal differentiation and corticogenesis.
    Keywords:  Cellular neuroscience; Molecular neuroscience; Molecular physiology
    DOI:  https://doi.org/10.1016/j.isci.2021.103484
  14. Front Physiol. 2021 ;12 807654
      Mitochondria are highly dynamic organelles and play essential role in ATP synthase, ROS production, innate immunity, and apoptosis. Mitochondria quality control is critical for maintaining the cellular function in response to cellular stress, growth, and differentiation Signals. Damaged or unwanted mitochondria are selectively removed by mitophagy, which is a crucial determinant of cell viability. Mitochondria-associated Endoplasmic Reticulum Membranes (MAMs) are the cellular structures that connect the ER and mitochondria and are involved in calcium signaling, lipid transfer, mitochondrial dynamic, and mitophagy. Abnormal mitochondrial quality induced by mitophagy impairment and MAMs dysfunction is associated with many diseases, including cardiovascular diseases (CVDs), metabolic syndrome, and neurodegenerative diseases. As a mitophagy receptor, FUNDC1 plays pivotal role in mitochondrial quality control through regulation of mitophagy and MAMs and is closely related to the occurrence of several types of CVDs. This review covers the regulation mechanism of FUNDC1-mediated mitophagy and MAMs formation, with a particular focus on its role in CVDs.
    Keywords:  FUNDC1; cardiovascular diseases; mitochondria; mitochondria quality/dynamics; mitophagy
    DOI:  https://doi.org/10.3389/fphys.2021.807654
  15. STAR Protoc. 2021 Dec 17. 2(4): 101021
      Drosophila flight muscles are highly enriched with mitochondria and have emerged as a powerful genetic system for studying how oxidative phosphorylation (OXPHOS) complexes are assembled. Here, we describe a series of protocols for analyzing the integrity of OXPHOS complexes in Drosophila via blue native polyacrylamide gel electrophoresis (BN PAGE). We have also included protocols for the additional steps that are typically performed after OXPHOS complexes are separated by BN PAGE, such as Coomassie staining, silver staining, and in-gel OXPHOS activities. For complete details on the use and execution of this protocol, please refer to Murari et al. (2020).
    Keywords:  Cell Biology; Genetics; Metabolism; Model Organisms; Protein Biochemistry
    DOI:  https://doi.org/10.1016/j.xpro.2021.101021
  16. STAR Protoc. 2022 Mar 18. 3(1): 101033
      Robust protocols are required to investigate in vitro the molecular mechanisms that control astrocyte metabolism and pro-inflammatory activities. In the present protocol, we describe step by step the isolation and culture of primary murine astrocytes from neonatal brains, followed by their genetic manipulation with siRNA. We further describe cytokine activation of the cultured astrocytes for the analysis of their pro-inflammatory responses, and the oxygen consumption analysis to assess their metabolic function. For complete details on the use and execution of this protocol, please refer to Chao et al. (2019), Clark et al. (2021), and Rothhammer et al. (2018).
    Keywords:  Cell culture; Cell isolation; Immunology; Metabolism; Neuroscience
    DOI:  https://doi.org/10.1016/j.xpro.2021.101033
  17. Mitochondrion. 2022 Jan 03. pii: S1567-7249(21)00181-1. [Epub ahead of print]
      Mitochondrial dysfunction has been defined as a reduced efficiency of mitochondria to produce ATP given by a loss of mitochondrial membrane potential, alterations in the electron transport chain (ETC) function, with increase in reactive oxygen species (ROS) generation and decrease in oxygen consumption. During the last decades, mitochondrial dysfunction has been the focus of many researchers as a convergent point for the pathophysiology of several diseases. Numerous investigations have demonstrated that mitochondrial dysfunction is detrimental to cells, tissues and organisms, nevertheless, dysfunctional mitochondria can signal in a particular way in response to stress, a characteristic that may be useful to search for new therapeutic strategies with a common feature. The aim of this review addresses mitochondrial dysfunction and stress signaling as a promising target for future drug development.
    Keywords:  aged-associated diseases; mitochondrial UPR; mitochondrial dysfunction; mitochondrial morphology; mitophagy
    DOI:  https://doi.org/10.1016/j.mito.2021.12.006
  18. Theranostics. 2022 ;12(2): 976-998
      Rationale: We found that a subset of signal transducer and activator of transcription 3 (STAT3) translocated into mitochondria in phagocytes, including macrophages isolated from individuals with sepsis. However, the role of mitochondrial STAT3 in macrophages remains unclear. Method: To investigate the function of mitochondrial STAT3 in vivo, we generated inducible mitochondrial STAT3 knock-in mice. A cytokine array analysis, a CBA analysis, flow cytometry, immunofluorescence staining and quantification and metabolic analyses in vivo were subsequently performed in an LPS-induced sepsis model. Single-cell RNA sequencing, a microarray analysis, metabolic assays, mass spectrometry and ChIP assays were utilized to gain insight into the mechanisms of mitochondrial STAT3 in metabolic reprogramming in LPS-induced sepsis. Results: We found that mitochondrial STAT3 induced NF-κB nuclear localization and exacerbated LPS-induced sepsis in parallel with a metabolic switch from mainly using glucose to an increased reliance on fatty acid oxidation (FAO). Moreover, mitochondrial STAT3 abrogated carnitine palmitoyl transferase 1a (CPT1a) ubiquitination and degradation in LPS-treated macrophages. Meanwhile, an interaction between CPT1a and ubiquitin-specific peptidase 50 (USP50) was observed. In contrast, knocking down USP50 decreased CPT1a expression and FAO mediated by mitochondrial STAT3. The ChIP assays revealed that NF-κB bound the USP50 promoter. Curcumin alleviated LPS-mediated sepsis by suppressing the activities of mitochondrial STAT3 and NF-κB. Conclusion: Our findings reveal that mitochondrial STAT3 could trigger FAO by inducing CPT1a stabilization mediated by USP50 in macrophages, at least partially.
    Keywords:  CPT1a stabilization; FAO; USP50; mitochondrial STAT3
    DOI:  https://doi.org/10.7150/thno.63751
  19. Stem Cell Rev Rep. 2022 Jan 08.
      Human pluripotent stem cells (hPSCs) have great potential for disease modeling, drug discovery, and regenerative medicine as they can differentiate into many different functional cell types via directed differentiation. However, the application of disease modeling is limited due to a time-consuming and labor-intensive process of introducing known pathogenic mutations into hPSCs. Base editing is a newly developed technology that enables the facile introduction of point mutations into specific loci within the genome of living cells without unwanted genome injured. We describe an optimized stepwise protocol to introduce disease-specific mutations of long QT syndrome (LQTs) into hPSCs. We highlight technical issues, especially those associated with introducing a point mutation to obtain isogenic hPSCs without inserting any resistance cassette and reproducible cardiomyocyte differentiation. Based on the protocol, we succeeded in getting hPSCs carrying LQTs pathogenic mutation with excellent efficiency (31.7% of heterozygous clones, 9.1% of homozygous clones) in less than 20 days. In addition, we also provide protocols to analyze electrophysiological of hPSC-derived cardiomyocytes using multi-electrode arrays. This protocol is also applicable to introduce other disease-specific mutations into hPSCs.
    Keywords:  Base editing; Disease model; LQT; Point mutation; hPSCs
    DOI:  https://doi.org/10.1007/s12015-021-10324-6
  20. J Inherit Metab Dis. 2022 Jan 08.
      A broad spectrum of signs and symptoms has been attributed to primary carnitine deficiency (PCD) since its first description in 1973. Advances in diagnostic procedures have improved diagnostic accuracy and the introduction of PCD in newborn screening programs (NBS) has led to the identification of an increasing number of PCD patients, including mothers of screened newborns, who may show a different phenotype compared to clinically diagnosed patients. To elucidate the spectrum of signs and symptoms in PCD patients, we performed a structured literature review. Using a case by case approach, clinical characteristics, diagnostic data and mode of patient identification were recorded. Signs and symptoms were categorized by organ involvement. In total, 166 articles were included, reporting data on 757 individual patients. In almost 20% (N = 136) of the cases, the diagnosis was based solely on low carnitine concentration which we considered an uncertain diagnosis of PCD. The remaining 621 cases had a diagnosis based on genetic and/or functional (ie, carnitine transporter activity) test results. In these 621 cases, cardiac symptoms (predominantly cardiomyopathy) were the most prevalent (23.8%). Neurological (7.1%), hepatic (8.4%) and metabolic (9.2%) symptoms occurred mainly in early childhood. Adult onset of symptoms occurred in 16/194 adult patients, of whom 6 (3.1%) patients suffered a severe event without any preceding symptom (5 cardiac events, 1 coma). In conclusion, symptoms in PCD predominantly develop in early childhood. Most newborns and mothers of newborns detected through NBS remain asymptomatic. However, though rarely, severe complications do occur in both groups. This article is protected by copyright. All rights reserved.
    Keywords:  OCTN2; PCD; carnitine; clinical characteristics; phenotyping; screening
    DOI:  https://doi.org/10.1002/jimd.12475
  21. iScience. 2022 Jan 21. 25(1): 103596
      Childhood-onset myocardial hypertrophy and cardiomyopathic changes are associated with significant morbidity and mortality in early life, particularly in patients with Noonan syndrome, a multisystemic genetic disorder caused by autosomal dominant mutations in genes of the Ras-MAPK pathway. Although the cardiomyopathy associated with Noonan syndrome (NS-CM) shares certain cardiac features with the hypertrophic cardiomyopathy caused by mutations in sarcomeric proteins (HCM), such as pathological myocardial remodeling, ventricular dysfunction, and increased risk for malignant arrhythmias, the clinical course of NS-CM significantly differs from HCM. This suggests a distinct pathophysiology that remains to be elucidated. Here, through analysis of sarcomeric myosin conformational states, histopathology, and gene expression in left ventricular myocardial tissue from NS-CM, HCM, and normal hearts complemented with disease modeling in cardiomyocytes differentiated from patient-derived PTPN11 N308S/+ induced pluripotent stem cells, we demonstrate distinct disease phenotypes between NS-CM and HCM and uncover cell cycle defects as a potential driver of NS-CM.
    Keywords:  Cell biology; Stem cells research; Transcriptomics
    DOI:  https://doi.org/10.1016/j.isci.2021.103596