bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2021‒07‒25
74 papers selected by
Catalina Vasilescu
University of Helsinki


  1. Front Cell Dev Biol. 2021 ;9 675465
      Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
    Keywords:  cytoplasmic translation; mitochondria; mitochondrial aminoacyl-tRNA synthetase; mitochondrial ribosome; mitoribosome assembly factors; protein translation; translation activators; translation factors
    DOI:  https://doi.org/10.3389/fcell.2021.675465
  2. Int J Mol Sci. 2021 Jul 20. pii: 7730. [Epub ahead of print]22(14):
      Mitochondrial diseases disrupt cellular energy production and are among the most complex group of inherited genetic disorders. Affecting approximately 1 in 5000 live births, they are both clinically and genetically heterogeneous, and can be highly tissue specific, but most often affect cell types with high energy demands in the brain, heart, and kidneys. There are currently no clinically validated treatment options available, despite several agents showing therapeutic promise. However, modelling these disorders is challenging as many non-human models of mitochondrial disease do not completely recapitulate human phenotypes for known disease genes. Additionally, access to disease-relevant cell or tissue types from patients is often limited. To overcome these difficulties, many groups have turned to human pluripotent stem cells (hPSCs) to model mitochondrial disease for both nuclear-DNA (nDNA) and mitochondrial-DNA (mtDNA) contexts. Leveraging the capacity of hPSCs to differentiate into clinically relevant cell types, these models permit both detailed investigation of cellular pathomechanisms and validation of promising treatment options. Here we catalogue hPSC models of mitochondrial disease that have been generated to date, summarise approaches and key outcomes of phenotypic profiling using these models, and discuss key criteria to guide future investigations using hPSC models of mitochondrial disease.
    Keywords:  CRISPR-Cas9; disease modelling; hESC; hPSC; iPSC; mitochondrial disease; mtDNA; stem cell
    DOI:  https://doi.org/10.3390/ijms22147730
  3. Proc Natl Acad Sci U S A. 2021 Jul 27. pii: e2014610118. [Epub ahead of print]118(30):
      Mitochondrial dysfunction is found in the brain and peripheral tissues of patients diagnosed with Huntington's disease (HD), an irreversible neurodegenerative disease of which aging is a major risk factor. Mitochondrial function is encoded by not only nuclear DNA but also DNA within mitochondria (mtDNA). Expansion of mtDNA heteroplasmies (coexistence of mutated and wild-type mtDNA) can contribute to age-related decline of mitochondrial function but has not been systematically investigated in HD. Here, by using a sensitive mtDNA-targeted sequencing method, we studied mtDNA heteroplasmies in lymphoblasts and longitudinal blood samples of HD patients. We found a significant increase in the fraction of mtDNA heteroplasmies with predicted pathogenicity in lymphoblasts from 1,549 HD patients relative to lymphoblasts from 182 healthy individuals. The increased fraction of pathogenic mtDNA heteroplasmies in HD lymphoblasts also correlated with advancing HD stages and worsened disease severity measured by HD motor function, cognitive function, and functional capacity. Of note, elongated CAG repeats in HTT promoted age-dependent expansion of pathogenic mtDNA heteroplasmies in HD lymphoblasts. We then confirmed in longitudinal blood samples of 169 HD patients that expansion of pathogenic mtDNA heteroplasmies was correlated with decline in functional capacity and exacerbation of HD motor and cognitive functions during a median follow-up of 6 y. The results of our study indicate accelerated decline of mtDNA quality in HD, and highlight monitoring mtDNA heteroplasmies longitudinally as a way to investigate the progressive decline of mitochondrial function in aging and age-related diseases.
    Keywords:  Huntington’s disease; mitochondrial DNA; sequencing
    DOI:  https://doi.org/10.1073/pnas.2014610118
  4. Front Neurol. 2021 ;12 679302
      Mitochondrial diseases are a group of common inherited disorders caused by mutations in nuclear DNA or mitochondrial DNA (mtDNA); the clinical phenotype of diseases caused by mutant mtDNA is challenging owing to heteroplasmy of mtDNA and may delay diagnosis and treatment. Herein, we report the case of an adult male who slowly developed epilepsy, ataxia, dystonia, impaired cognition, and hearing impairment over 14 years in the absence of clinical myopathy. His lactate level was normal. Brain computed tomography showed calcifications of the bilateral basal ganglia, thalamus, and cerebellar dentate nuclei. Magnetic resonance imaging revealed multiple lesions in the bilateral internal capsule and periventricular areas, which were hypointense on T1-weighted images and hyperintense on T2-weighted images. The first blood genetic test result was negative. Two years later, a muscle biopsy was performed. Succinate dehydrogenase (SDH) staining showed several ragged blue fibers and atypical strongly SDH-reactive vessels. Cytochrome C oxidase (COX) staining revealed abundant COX-deficient fibers. mtDNA testing of blood and muscle revealed a rare m.5549G>A mutation in the MT-TW gene. It was heteroplasmic, with 5.4% mutant mtDNA in the blood and 61.5% in the muscle. The patient was diagnosed with mitochondrial encephalomyopathy and treated with levetiracetam instead of valproate to reduce possible mitochondrial toxicity. After receiving anti-epileptic drugs and mitochondrial supplements, the patient remained clinically stable. For mitochondrial disease, when mutant mtDNA is not detected in blood, muscle biopsy should be performed in routine analysis, and it should be genetically tested, even if there are no manifestations of myopathy.
    Keywords:  MT-TW; ataxia; dystonia; epilepsy; mitochondrial encephalomyopathy
    DOI:  https://doi.org/10.3389/fneur.2021.679302
  5. Elife. 2021 Jul 20. pii: e65484. [Epub ahead of print]10
      Mitochondria are organelles with their own genomes, but they rely on the import of nuclear-encoded proteins that are translated by cytosolic ribosomes. Therefore, it is important to understand whether failures in the mitochondrial uptake of these nuclear-encoded proteins can cause proteotoxic stress and identify response mechanisms that may counteract it. Here, we report that upon impairments in mitochondrial protein import, high-risk precursor and immature forms of mitochondrial proteins form aberrant deposits in the cytosol. These deposits then cause further cytosolic accumulation and consequently aggregation of other mitochondrial proteins and disease-related proteins, including α-synuclein and amyloid β. This aggregation triggers a cytosolic protein homeostasis imbalance that is accompanied by specific molecular chaperone responses at both the transcriptomic and protein levels. Altogether, our results provide evidence that mitochondrial dysfunction, specifically protein import defects, contributes to impairments in protein homeostasis, thus revealing a possible molecular mechanism by which mitochondria are involved in neurodegenerative diseases.
    Keywords:  C. elegans; S. cerevisiae; biochemistry; chemical biology
    DOI:  https://doi.org/10.7554/eLife.65484
  6. Int J Biochem Cell Biol. 2021 Jul 20. pii: S1357-2725(21)00130-8. [Epub ahead of print] 106050
      Classical mitochondrial disease (MD) represents a group of complex metabolic syndromes primarily linked to dysfunction of the mitochondrial ATP-generating oxidative phosphorylation (OXPHOS) system. To date, effective therapies for these diseases are lacking. Here we discuss the ketogenic diet (KD), being a high-fat, moderate protein, and low carbohydrate diet, as a potential intervention strategy. We concisely review the impact of the KD on bioenergetics, ROS/redox metabolism, mitochondrial dynamics and mitophagy. Next, the consequences of the KD in (models of) MD, as well as KD adverse effects, are described. It is concluded that the current experimental evidence suggests that the KD can positively impact on mitochondrial bioenergetics, mitochondrial ROS/redox metabolism and mitochondrial dynamics. However, more information is required on the bioenergetic consequences and mechanistic mode-of-action aspects of the KD at the cellular level and in MD patients.
    Keywords:  bioenergetics; ketone bodies; mitochondria; mitochondrial disease
    DOI:  https://doi.org/10.1016/j.biocel.2021.106050
  7. EMBO Rep. 2021 Jul 23. e51954
      Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria-targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER-located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2-dependent ER-mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER-targeted Mfn2 or an artificial ER-mitochondria tether, indicating that manipulation of ER-mitochondria contacts could be used to treat pathologic conditions involving Mfn2.
    Keywords:  Ca2+; ER-mitochondria tethering; Mfn2; neuritic growth
    DOI:  https://doi.org/10.15252/embr.202051954
  8. Front Mol Biosci. 2021 ;8 676187
      Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, as well as in rare neurological disorders, including Huntington's disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
    Keywords:  Ca2+ homeostasis; mitochondria; mitochondrial DNA maintenance; mitochondrial dynamics; neurodegeneration; quality control; selective vulnerability
    DOI:  https://doi.org/10.3389/fmolb.2021.676187
  9. EMBO J. 2021 Jul 20. e109001
      Mitochondrial activity is becoming an inherent aspect of cellular protein homeostasis (proteostasis). In this issue, Schlagowski et al (2021) report on the attractive notion that modulating mitochondrial protein import activity stimulates protein aggregate clearance in the cytosol, thereby affecting cytosolic proteostasis and its collapse observed in neurodegenerative diseases.
    DOI:  https://doi.org/10.15252/embj.2021109001
  10. J Mol Med (Berl). 2021 Jul 17.
      Mutations in BCS1L are the most frequent cause of human mitochondrial disease linked to complex III deficiency. Different forms of BCS1L-related diseases and more than 20 pathogenic alleles have been reported to date. Clinical symptoms are highly heterogenous, and multisystem involvement is often present, with liver and brain being the most frequently affected organs. BCS1L encodes a mitochondrial AAA + -family member with essential roles in the latest steps in the biogenesis of mitochondrial respiratory chain complex III. Since Bcs1 has been investigated mostly in yeast and mammals, its function in invertebrates remains largely unknown. Here, we describe the phenotypical, biochemical and metabolic consequences of Bcs1 genetic manipulation in Drosophila melanogaster. Our data demonstrate the fundamental role of Bcs1 in complex III biogenesis in invertebrates and provide novel, reliable models for BCS1L-related human mitochondrial diseases. These models recapitulate several features of the human disorders, collectively pointing to a crucial role of Bcs1 and, in turn, of complex III, in development, organismal fitness and physiology of several tissues.
    Keywords:  BCS1L; Drosophila melanogaster; Mitochondrial disease; Mitochondrial respiratory chain; Respiratory chain complex III
    DOI:  https://doi.org/10.1007/s00109-021-02110-1
  11. Parkinsonism Relat Disord. 2021 Jul 13. pii: S1353-8020(21)00263-7. [Epub ahead of print]89 146-147
      Mitochondrial Membrane-protein Associated Neurodegeneration (MPAN) is a rare disease, caused by C19orf12 mutations and up to 29 different mutations have been described. We report a young woman presented with spastic paraparesis due to C19orf12 gene. MPAN presenting like Hereditary spastic paraplegia-43 is rare and the genetic mutation had been described only once in the literature.
    Keywords:  Hereditary spastic paraplegia; Misense mutation; Mitochondrial membrane-protein associated neurodegeneration
    DOI:  https://doi.org/10.1016/j.parkreldis.2021.07.014
  12. Int J Cardiol. 2021 Jul 20. pii: S0167-5273(21)01080-9. [Epub ahead of print]
      BACKGROUND: Cardiomyopathy is a risk factor for poor prognosis in pediatric patients with mitochondrial disease. However, other risk factors including genetic factors related to poor prognosis in mitochondrial disease has yet to be fully elucidated.METHODS AND RESULTS: Between January 2004 and September 2019, we enrolled 223 consecutive pediatric mitochondrial disease patients aged <18 years with a confirmed genetic diagnosis, including 114 with nuclear gene mutations, 89 patients with mitochondrial DNA (mtDNA) point mutations, 11 with mtDNA single large-scale deletions and 9 with chromosomal aberrations. Cardiomyopathy at baseline was observed in 46 patients (22%). Hazard ratios (HR) and 95% confidence intervals (CI) were calculated for all-cause mortality. Over a median follow-up of 36 months (12-77), there were 85 deaths (38%). The overall survival rate was significantly lower in patients with cardiomyopathy than in those without (p < 0.001, log-rank test). By multivariable analysis, left ventricular (LV) hypertrophy (HR = 4.6; 95% CI: 2.8-7.3), neonatal onset (HR = 2.9; 95% CI: 1.8-4.5) and chromosomal aberrations (HR = 2.9; 95% CI: 1.3-6.5) were independent predictors of all-cause mortality. Patients with LV hypertrophy with neonatal onset and/or chromosomal aberrations had higher mortality (100% in 21 patients) than those with LV hypertrophy alone (71% in 14 patients).
    CONCLUSION: In pediatric patients with mitochondrial disease, cardiomyopathy was common (22%) and was associated with increased mortality. LV hypertrophy, neonatal onset and chromosomal aberrations were independent predictors of all-cause mortality. Prognosis is particularly unfavourable if LV hypertrophy is combined with neonatal onset and/or chromosomal aberrations.
    Keywords:  Cardiomyopathy; Genetic risk factors; Mitochondrial cardiomyopathy; Mitochondrial disease; Mitochondrial respiratory chain complex deficiencies; Pediatric
    DOI:  https://doi.org/10.1016/j.ijcard.2021.06.042
  13. Neurobiol Dis. 2021 Jul 20. pii: S0969-9961(21)00200-X. [Epub ahead of print] 105451
      In healthy neurons, a mitochondria membrane potential gradient exists whereby membrane potential is highest in the soma and decreases with distance from the nucleus. Correspondingly, distal mitochondria have more oxidative damage and slower protein import than somal mitochondria. Due to these differences, distal mitochondria have an intrinsic first stressor that somal mitochondria do not have, resulting in synaptic mitochondrial vulnerability. A second stressor may result from mutant protein expression, situational stress, or aging, exacerbating vulnerable mitochondria activating stress responses. Under these conditions, distal mitochondria release cytochrome c and mitochondrial DNA, leading to compartmentalized sub-lethal caspase-3 activation and cytokine production. In this two-hit mitochondrial-driven synaptic loss model, synapse vulnerability during neurodegeneration is explained as a superposition of pre-existing lower synaptic mitochondria membrane potential (hit one) with additional mitochondrial stress (hit two). This two-hit mechanism occurs in synaptic mitochondria, activating signaling pathways leading to synaptic degeneration, as a potential preamble to neuronal death.
    Keywords:  Caspase; Mitochondria; Neurodegeneration; Neuroinflammation; Synaptic degeneration; Synaptic plasticity
    DOI:  https://doi.org/10.1016/j.nbd.2021.105451
  14. Mol Genet Metab Rep. 2021 Sep;28 100782
      Background: Mitochondrial alanyl-tRNA synthetase 2 gene (AARS2) related disease is a rare genetic disorder affecting mitochondrial metabolism, leading to severe cardiac disease in infants or progressive leukodystrophy in young adults. The disease is considered ultra-rare with only 39 cases of AARS2-leukodystrophy previously reported.Case presentation: We present the case of a young man of consanguineous heritage suffering from cognitive decline and progressive spasticity as well as weakness of the proximal musculature. Utilizing MRI and whole genome sequencing, the patient was diagnosed with a homozygous AARS2 missense variant (NM_020745.3:c.650C > T; p.(Pro217Leu)) and a homozygous CAPN3 variant (NM_000070.2: c.1469G > A; p.(Arg490Gln)), both variants have previously been identified in patients suffering from AARS2 related leukodystrophy and limb-girdle muscular dystrophy, respectively.
    Conclusions: This case report presents a case of homozygous AARS2 leukodystrophy and serves to highlight the importance of whole genome sequencing in diagnosing rare neurological diseases as well as to add to the awareness of adult onset leukodystrophies.
    Keywords:  AARS2; AARS2, Mitochondrial alanyl-tRNA synthetase 2 gene; AARS2-L, Mitochondrial alanyl-tRNA synthetase 2 gene leukodystrophy; ADLs, activities of daily living; ALSP, Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia; Adult onset leukodystrophies; CSF, Cerebrospinal fluid; CSF1R, Colony stimulating factor-1 receptor; Case report; DARS2, Deficiency of aspartyl-tRNA; EARS2, Deficiency of glutamate-tRNA synthetase; HDLS, Hereditary Diffuse Leukodystrophy with axonal Spheroids; IEM, Inborn errors of metabolism; Inborn errors of metabolism; LGMD R1, Limb-girdle muscular dystrophy R1 calpain3-related; Limb-girdle muscular dystrophy; MMSE, Mini-Mental State Examination; Mt-aaRS, Mitochondrial aminoacyl-tRNA synthetase; Whole genome sequencing; mtDNA, Mitochondrial DNA
    DOI:  https://doi.org/10.1016/j.ymgmr.2021.100782
  15. Genes Dis. 2021 Sep;8(5): 640-654
      Mitochondrial autophagy (mitophagy) is the selective clearance of damaged or incomplete mitochondria by autophagy, which is critical for the functional integrity of the entire mitochondrial network and cell survival. Because dysfunction of mitophagy is closely related to many diseases, it is important to study the specific molecular mechanism and pathophysiological significance of mitophagy. FUN14 domain-containing 1 (FUNDC1) is a newly identified mitochondrial outer membrane protein that induces receptor-mediated mitophagy by its interaction with LC3 during hypoxia. The expression, phosphorylation, regulation and significance of FUNDC1 are reviewed in the context of a large number of pathophysiological conditions. Emerging evidence has demonstrated that levels and phosphorylation states of FUNDC1 are closely related to occurrence, progression and prognosis of various diseases including heart diseases and cancers, indicating that FUNDC1 may serve as a promising biomarker and potential therapeutic target.
    Keywords:  Autophagy; Biomarker; FUNDC1; Heart diseases; Hypoxia; Mitochondria; Mitochondrial ROS; Platelets
    DOI:  https://doi.org/10.1016/j.gendis.2020.08.011
  16. Int J Mol Sci. 2021 Jul 14. pii: 7525. [Epub ahead of print]22(14):
      Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
    Keywords:  cell metabolism; disease; mitochondrial function; mitochondrial metal ion homeostasis; mitochondrial metal ion transport
    DOI:  https://doi.org/10.3390/ijms22147525
  17. Front Cell Infect Microbiol. 2021 ;11 704494
      Coxsackievirus B3 (CVB3) is a common enterovirus that causes systemic inflammatory diseases, such as myocarditis, meningitis, and encephalitis. CVB3 has been demonstrated to subvert host cellular responses via autophagy to support viral replication in neural stem cells. Mitophagy, a specialized form of autophagy, contributes to mitochondrial quality control via degrading damaged mitochondria. Here, we show that CVB3 infection induces mitophagy in human neural progenitor cells, HeLa and H9C2 cardiomyocytes. In particular, CVB3 infection triggers mitochondrial fragmentation, loss of mitochondrial membrane potential, and Parkin/LC3 translocation to the mitochondria. Rapamycin or carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment led to increased CVB3 RNA copy number in a dose-dependent manner, suggesting enhanced viral replication via autophagy/mitophagy activation, whereas knockdown of PTEN-induced putative kinase protein 1(PINK1) led to impaired mitophagy and subsequent reduction in viral replication. Furthermore, CCCP treatment inhibits the interaction between mitochondrial antiviral signaling protein (MAVS) and TANK-binding kinase 1(TBK1), thus contributing to the abrogation of type I and III interferon (IFN) production, suggesting that mitophagy is essential for the inhibition of interferon signaling. Our findings suggest that CVB3-mediated mitophagy suppresses IFN pathways by promoting fragmentation and subsequent sequestration of mitochondria by autophagosomes.
    Keywords:  Coxsackievirus B3 virus; interferon; mitochondrial dynamics; mitophagy; neural progenitor cells and stem cells
    DOI:  https://doi.org/10.3389/fcimb.2021.704494
  18. Biophys J. 2021 Jul 20. pii: S0006-3495(21)00598-1. [Epub ahead of print]
      Mitochondria exhibit unstable inner membrane potentials (ΔΨm) when subjected to stress, such as during Ischemia/Reperfusion (I/R). Understanding the mechanism of ΔΨm instability involves characterizing and quantifying this phenomenon in an unbiased and reproducible manner. Here, we describe a simple analytical workflow called 'MitoWave' that combines wavelet transform methods and image segmentation to unravel dynamic ΔΨm changes in the cardiac mitochondrial network during I/R. In vitro ischemia was effected by placing a glass coverslip on a monolayer of neonatal mouse ventricular myocytes (NMVMs) for 1 hour and removing the coverslip to allowed for reperfusion, revealing complex oscillatory ΔΨm. MitoWave analysis was then used to identify individual mitochondrial clusters within the cells and track their intrinsic oscillation frequencies over the course of reperfusion. Responses segregated into five typical behaviors quantified by MitoWave that were corroborated by visual inspection of the time series. Statistical analysis of the distribution of oscillating mitochondrial clusters during reperfusion showed significant differences between the five different outcomes. Features such as the time-point of ΔΨm depolarization during I/R, area of mitochondrial clusters, and time-resolved frequency components dAuring reperfusion were determined per cell and per mitochondrial cluster. Mitochondria from NMVMs subjected to I/R oscillate in the frequency range of 8.6-45mHz, with a mean of 8.73±4.35mHz. Oscillating clusters had smaller areas ranging from 49.8±1.2 μm2 while non-oscillating clusters had larger areas 66±1.5μm2. A negative correlation between frequency and mitochondrial cluster area was observed. We also observed that late ΔΨm loss during ischemia correlated with early ΔΨm stabilization after oscillation on reperfusion. Thus, MitoWave analysis provides a semi-automated method to quantify complex time-resolved mitochondrial behavior in an easy to follow workflow, enabling unbiased, reproducible quantitation of complex non-stationary cellular phenomena.
    Keywords:  image processing; ischemia; mitochondrial membrane potential; oscillation; oxidative phosphorylation; reperfusion; time-series analysis; wavelet
    DOI:  https://doi.org/10.1016/j.bpj.2021.05.033
  19. Int J Mol Sci. 2021 Jul 19. pii: 7702. [Epub ahead of print]22(14):
      The liver plays a key role in systemic metabolic processes, which include detoxification, synthesis, storage, and export of carbohydrates, lipids, and proteins. The raising trends of obesity and metabolic disorders worldwide is often associated with the nonalcoholic fatty liver disease (NAFLD), which has become the most frequent type of chronic liver disorder with risk of progression to cirrhosis and hepatocellular carcinoma. Liver mitochondria play a key role in degrading the pathways of carbohydrates, proteins, lipids, and xenobiotics, and to provide energy for the body cells. The morphological and functional integrity of mitochondria guarantee the proper functioning of β-oxidation of free fatty acids and of the tricarboxylic acid cycle. Evaluation of the liver in clinical medicine needs to be accurate in NAFLD patients and includes history, physical exam, imaging, and laboratory assays. Evaluation of mitochondrial function in chronic liver disease and NAFLD is now possible by novel diagnostic tools. "Dynamic" liver function tests include the breath test (BT) based on the use of substrates marked with the non-radioactive, naturally occurring stable isotope 13C. Hepatocellular metabolization of the substrate will generate 13CO2, which is excreted in breath and measured by mass spectrometry or infrared spectroscopy. Breath levels of 13CO2 are biomarkers of specific metabolic processes occurring in the hepatocyte cytosol, microsomes, and mitochondria. 13C-BTs explore distinct chronic liver diseases including simple liver steatosis, non-alcoholic steatohepatitis, liver fibrosis, cirrhosis, hepatocellular carcinoma, drug, and alcohol effects. In NAFLD, 13C-BT use substrates such as α-ketoisocaproic acid, methionine, and octanoic acid to assess mitochondrial oxidation capacity which can be impaired at an early stage of disease. 13C-BTs represent an indirect, cost-effective, and easy method to evaluate dynamic liver function. Further applications are expected in clinical medicine. In this review, we discuss the involvement of liver mitochondria in the progression of NAFLD, together with the role of 13C-BT in assessing mitochondrial function and its potential use in the prevention and management of NAFLD.
    Keywords:  breath test; hepatic mitochondrial function; hepatocellular carcinoma; ketoisocaproic acid; liver diseases; liver steatosis; methacetin; methionine; octanoic acid; β-oxidation
    DOI:  https://doi.org/10.3390/ijms22147702
  20. Int J Mol Sci. 2021 Jul 08. pii: 7349. [Epub ahead of print]22(14):
      Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.
    Keywords:  cardiomyopathies; mitochondrial dysfunction; neuromuscular disorders
    DOI:  https://doi.org/10.3390/ijms22147349
  21. Molecules. 2021 Jul 04. pii: 4087. [Epub ahead of print]26(13):
      The functioning of mitochondria and their biogenesis are largely based on the proper function of the mitochondrial outer membrane channels, which selectively recognise and import proteins but also transport a wide range of other molecules, including metabolites, inorganic ions and nucleic acids. To date, nine channels have been identified in the mitochondrial outer membrane of which at least half represent the mitochondrial protein import apparatus. When compared to the mitochondrial inner membrane, the presented channels are mostly constitutively open and consequently may participate in transport of different molecules and contribute to relevant changes in the outer membrane permeability based on the channel conductance. In this review, we focus on the channel structure, properties and transported molecules as well as aspects important to their modulation. This information could be used for future studies of the cellular processes mediated by these channels, mitochondrial functioning and therapies for mitochondria-linked diseases.
    Keywords:  MAC; MIM; Mdm10; TOB/SAM; TOM; Tob55/Sam50; Tom40; import channel; mitochondria
    DOI:  https://doi.org/10.3390/molecules26134087
  22. Mol Neurobiol. 2021 Jul 19.
      Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by impaired social interaction and behavioural abnormalities. Growing evidence proved that impairment in mitochondrial functions could inhibit energy production and may contribute to the onset of ASD. Genetic variants in the genes of mitochondrial DNA (mtDNA) could interrupt the normal energy metabolism and production in the brain which lead to a wide range of structural and functional changes in the brain resulting in ASD. The present study aims to compare the activities of mitochondrial electron transport chain (ETC) complex I, pyruvate dehydrogenase (PDH) and specific mitochondrial DNA gene (MT-ND1 and MT-ND4) variants associated with ASD subjects in the Tamil Nadu population. Mutational analysis revealed that most mutations in ASD subjects showed synonymous type followed by missense in both the ND1 and ND4 genes. Interestingly, we found that the complex I and PDH dysfunctions may have a role in ASD compared to the controls (p ≤ 0.0001). Hence, the results of the present study suggest that mitochondrial dysfunction, specifically the complex I genes, may play a major role in the onset of ASD, concluding that further research on mitochondrial genes are mandatory to unravel the mechanism behind ASD pathogenesis.
    Keywords:  Autism spectrum disorder; Complex I activity; Mitochondrial dysfunction; PDH activity; Single-nucleotide polymorphism; mtDNA gene mutations
    DOI:  https://doi.org/10.1007/s12035-021-02492-w
  23. Br J Pharmacol. 2021 Jul 21.
      Treatment of cardiac arrhythmia remains challenging due to severe side effects of common anti-arrhythmic drugs. We previously demonstrated that mitochondrial Ca2+ uptake in cardiomyocytes represents a promising new candidate structure for safer drug therapy. However, druggable agonists of mitochondrial Ca2+ uptake suitable for preclinical and clinical studies are still missing. Here, we screened 727 compounds with a history of use in human clinical trials for their potential to enhance mitochondrial Ca2+ uptake. As a primary screening platform we used a previously validated permeabilized HeLa cell-based assay and identified three candidates. To reassess these hits in a cardiac system we tested them in cultured cardiomyocytes and found that two compounds, the FDA and EMA approved drugs ezetimibe and disulfiram, were effective in stimulating SR-mitochondria Ca2+ transfer at nanomolar concentrations, which is significantly lower compared to the previously described mitochondrial Ca2+ uptake enhancers (MiCUps) efsevin, a gating modifier of the voltage-dependent anion channel 2, and kaempferol, an agonist of the mitochondrial Ca2+ uniporter. Evaluation of their efficacy in translational models revealed that both substances significantly suppressed arrhythmogenesis in an in vivo zebrafish Ca2+ overload model and suppressed arrhythmogenic signals in both, freshly isolated ventricular cardiomyocytes of a mouse model for catecholaminergic polymorphic ventricular tachycardia (CPVT) and induced pluripotent stem cell derived cardiomyocytes from a CPVT patient. Taken together we identified ezetimibe and disulfiram as novel MiCUPs and efficient suppressors of arrhythmogenesis and as such as promising candidates for future preclinical and clinical studies.
    Keywords:  Anti-arrhythmic; Arrhythmia; CPVT; MCU; MiCUps; Mitochondria
    DOI:  https://doi.org/10.1111/bph.15630
  24. Front Genet. 2021 ;12 611226
      Combined Oxidative Phosphorylation Deficiency 23 (COXPD23) caused by mutations in GTPBP3 gene is a rare mitochondrial disease, and this disorder identified from the Chinese population has not been described thus far. Here, we report a case series of three patients with COXPD23 caused by GTPBP3 mutations, from a severe to a mild phenotype. The main clinical features of these patients include lactic acidosis, myocardial damage, and neurologic symptoms. Whole genome sequencing and targeted panels of candidate human mitochondrial genome revealed that patient 1 was a compound heterozygote with novel mutations c.413C > T (p. A138V) and c.509_510del (p. E170Gfs∗42) in GTPBP3. Patient 2 was a compound heterozygote with novel mutations c.544G > T (p. G182X) and c.785A > C (p.Q262P), while patient 3 was a compound heterozygote with a previously reported mutation c.424G > A (p.E142K) and novel mutation c.785A > C (p.Q262P). In conclusion, we first describe three Chinese individuals with COXPD23, and discuss the genotype-phenotype correlations of GTPBP3 mutations. Our findings provide novel information in the diagnosis and genetic counseling of patients with mitochondrial disease.
    Keywords:  Combined Oxidative Phosphorylation Deficiency 23; GTPBP3 gene; hyperalaninemia; hyperlactacidemia; mitochondrial disease
    DOI:  https://doi.org/10.3389/fgene.2021.611226
  25. Front Cardiovasc Med. 2021 ;8 689101
      A pathophysiological consequence of both type 1 and 2 diabetes is remodelling of the myocardium leading to the loss of left ventricular pump function and ultimately heart failure (HF). Abnormal cardiac bioenergetics associated with mitochondrial dysfunction occurs in the early stages of HF. Key factors influencing mitochondrial function are the shape, size and organisation of mitochondria within cardiomyocytes, with reports identifying small, fragmented mitochondria in the myocardium of diabetic patients. Cardiac mitochondria are now known to be dynamic organelles (with various functions beyond energy production); however, the mechanisms that underpin their dynamism are complex and links to motility are yet to be fully understood, particularly within the context of HF. This review will consider how the outer mitochondrial membrane protein Miro1 (Rhot1) mediates mitochondrial movement along microtubules via crosstalk with kinesin motors and explore the evidence for molecular level changes in the setting of diabetic cardiomyopathy. As HF and diabetes are recognised inflammatory conditions, with reports of enhanced activation of the NLRP3 inflammasome, we will also consider evidence linking microtubule organisation, inflammation and the association to mitochondrial motility. Diabetes is a global pandemic but with limited treatment options for diabetic cardiomyopathy, therefore we also discuss potential therapeutic approaches to target the mitochondrial-microtubule-inflammatory axis.
    Keywords:  HDAC6; Miro1; NLRP3; diabetic cardiomyopathy; heart failure; microtubules; mitochondrial dysfunction; mitochondrial movement
    DOI:  https://doi.org/10.3389/fcvm.2021.689101
  26. Eur J Hum Genet. 2021 Jul 20.
      We report a patient with profound congenital hypotonia, central hypoventilation, poor visual behaviour with retinal hypopigmentation, and significantly decreased mitochondrial respiratory chain complex I activity in muscle, who died at 7 months of age having made minimal developmental progress. Biallelic predicted truncating P4HTM variants were identified following trio whole-genome sequencing, consistent with a diagnosis of hypotonia, hypoventilation, intellectual disability, dysautonomia, epilepsy and eye abnormalities (HIDEA) syndrome. Very few patients with HIDEA syndrome have been reported previously and mitochondrial abnormalities were observed in three of four previous cases who had a muscle biopsy, suggesting the possibility that HIDEA syndrome represents a primary mitochondrial disorder. P4HTM encodes a transmembrane prolyl 4-hydroxylase with putative targets including hypoxia inducible factors, RNA polymerase II and activating transcription factor 4, which has been implicated in the integrated stress response observed in cell and animal models of mitochondrial disease, and may explain the mitochondrial dysfunction observed in HIDEA syndrome.
    DOI:  https://doi.org/10.1038/s41431-021-00932-8
  27. Int J Mol Sci. 2021 Jul 15. pii: 7562. [Epub ahead of print]22(14):
      Mitochondria are complex intracellular organelles involved in many aspects of cellular life, with a primary role in bioenergy production via oxidative phosphorylation (OXPHOS) [...].
    DOI:  https://doi.org/10.3390/ijms22147562
  28. FEBS J. 2021 Jul 17.
      Ubiquilin (UBQLN) proteins are a dynamic and versatile family of proteins found in all eukaryotes that function in the regulation of proteostasis. Besides their canonical function as shuttle factors in delivering misfolded proteins to the proteasome and autophagy systems for degradation, there is emerging evidence that UBQLN proteins play broader roles in proteostasis. New information suggests the proteins function as chaperones in protein folding, protecting proteins prior to membrane insertion, and as guardians for mitochondrial protein import. In this review, we describe the evidence for these different roles, highlighting how different domains of the proteins impart these functions. We also describe how changes in the structure and phase separation properties of UBQLNs may regulate their activity and function. Finally, we discuss the pathogenic mechanisms by which mutations in UBQLN2 cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We describe the animal model systems made for different UBQLN2 mutations and how lessons learnt from these systems provide fundamental insight into the molecular mechanisms by which UBQLN2 mutations drive disease pathogenesis through disturbances in proteostasis.
    Keywords:  ALS; OXPHOS; UBQLN2; mitochondria
    DOI:  https://doi.org/10.1111/febs.16129
  29. Front Cell Dev Biol. 2021 ;9 643444
      Mitochondria are highly dynamic organelles whose activity is an important determinant of blood stem and progenitor cell state. Mitochondrial morphology is maintained by continuous fission and fusion and affects stem cell proliferation, differentiation, and aging. However, the mechanism by which mitochondrial morphology and dynamics regulate cell differentiation and lineage choice remains incompletely understood. Asrij/OCIAD1 is a conserved protein that governs mitochondrial morphology, energy metabolism and human embryonic stem cell (hESC) differentiation. To investigate the in vivo relevance of these properties, we compared hESC phenotypes with those of Drosophila hematopoiesis, where Asrij is shown to regulate blood progenitor maintenance by conserved mechanisms. In concordance with hESC studies, we found that Drosophila Asrij also localizes to mitochondria of larval blood cells and its depletion from progenitors results in elongated mitochondria. Live imaging of asrij knockdown hemocytes and of OCIAD1 knockout hESCs showed reduced mitochondrial dynamics. Since key regulators of mitochondrial dynamics actively regulate mitochondrial morphology, we hypothesized that mitochondrial fission and fusion may control progenitor maintenance or differentiation in an Asrij-dependent manner. Knockdown of the fission regulator Drp1 in Drosophila lymph gland progenitors specifically suppressed crystal cell differentiation whereas depletion of the fusion regulator Marf (Drosophila Mitofusin) increased the same with concomitant upregulation of Notch signaling. These phenotypes were stronger in anterior progenitors and were exacerbated by Asrij depletion. Asrij is known to suppress Notch signaling and crystal cell differentiation. Our analysis reveals that synergistic interactions of Asrij with Drp1 and Marf have distinct impacts on lymph gland progenitor mitochondrial dynamics and crystal cell differentiation. Taken together, using invertebrate and mammalian model systems we demonstrate a conserved role for Asrij/OCIAD1 in linking mitochondrial dynamics and progenitor differentiation. Our study sets the stage for deciphering how regulators of mitochondrial dynamics may contribute to functional heterogeneity and lineage choice in vertebrate blood progenitors.
    Keywords:  Asrij; Drosophila lymph gland; Notch signaling; blood lineage choice; blood progenitor differentiation; human embryonic stem cells (hESC); mitochondrial dynamics; progenitor heterogeneity
    DOI:  https://doi.org/10.3389/fcell.2021.643444
  30. Front Neurol. 2021 ;12 640371
      Metabolic diseases should always be considered when evaluating children presenting with seizures. This is because many metabolic disorders are potentially treatable and seizure control can be achieved when these diseases are appropriately treated. Seizures caused by underlying metabolic diseases (metabolic seizures) should be particularly considered in unexplained neonatal seizures, refractory seizures, seizures related to fasting or food intake, seizures associated with other systemic or neurologic features, parental consanguinity, and family history of epilepsy. Metabolic seizures can be caused by various amino acids metabolic disorders, disorders of energy metabolism, cofactor-related metabolic diseases, purine and pyrimidine metabolic diseases, congenital disorders of glycosylation, and lysosomal and peroxisomal disorders. Diagnosing metabolic seizures without delay is essential because the immediate initiation of appropriate therapy for many metabolic diseases can prevent or minimize complications.
    Keywords:  epilepsy; inborn errors of metabolism; metabolic diseases; mitochondrial diseases; seizures
    DOI:  https://doi.org/10.3389/fneur.2021.640371
  31. Nephron. 2021 Jul 20. 1-5
      Necroptosis is a programmed cell death that is characterized by regulated necrosis resulting in plasma membrane rupture and subsequent release of damage-associated molecular patterns (DAMPs). Receptor-interacting protein kinase 3 (RIPK3) is a key mediator of this pathway. Accumulating evidence supports a critical role of RIPK3 and the necroptosis pathway in various human diseases. In this review, we discuss recent investigations that have uncovered pathogenic roles of RIPK3 in both acute kidney injury (AKI) and kidney fibrosis. RIPK3 promotes kidney tubular injury via a mechanism involving mitochondrial dysfunction. Additionally, extracellular mitochondrial DNA, which is one of the necroptotic DAMPs, released from damaged mitochondria correlates with kidney tubular injury and represents a potential novel biomarker. RIPK3 also induces kidney fibrogenesis through AKT-dependent activation of the metabolic enzyme ATP citrate lyase. Thus, the RIPK3-mediated necroptosis pathway may serve as a promising new therapeutic target in AKI and kidney fibrosis.
    Keywords:  Acute kidney injury; Kidney fibrosis; Mitochondrial DNA; Necroptosis; Receptor-interacting protein kinase 3
    DOI:  https://doi.org/10.1159/000517732
  32. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2021 Jun 28. pii: 1672-7347(2021)06-0653-05. [Epub ahead of print]46(6): 653-657
      Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, which is often accompanied by mitochondrial dysfunction. Cardiolipin is a special lipid of mitochondrial inner membrane and any change of cardiolipin may cause series of mitochondria-relevant diseases. Changes in cardiolipin content, fatty acid side chain composition after cardiolipin remodeling, and the content of cardiolipin remodeling enzymes play an important role in the occurrence and development of NAFLD-related mitochondrial dysfunction.
    Keywords:  cardiolipin; mitochondrial dysfunction; non-alcoholic fatty liver disease
    DOI:  https://doi.org/10.11817/j.issn.1672-7347.2021.200583
  33. Front Pediatr. 2021 ;9 700898
      A number of causative mutations in mitochondrial and nuclear DNA have been identified for Leigh syndrome, a neurodegenerative encephalopathy, including m. 8993 T>G, m.8993 T>C, and m.3243A>G mutations in the MTATP6, MTATP6, and MT-TL1 genes, respectively, which have been reported in Leigh syndrome patients in China. The m.13513 G>A mutation has been described only a few times in the literature and not previously reported in China. Here we report the case of a 15-month-old boy who presented with ptosis and developmental delay and was diagnosed with Leigh syndrome and well as Wolff-Parkinson-White (WPW) syndrome. The m.13513 G>A mutation was found in DNA from blood. He was intubated due to respiratory failure and died at 23 months of age. The m.13513 G>A mutation in the ND5 gene of mitochondrial DNA is associated with Leigh syndrome and WPW syndrome; however, this is the first report of this mutation in a patient in China, highlighting the geographical and racial variability of Leigh syndrome.
    Keywords:  13513 mutation; Leigh syndrome; Wolff-Parkinson-White syndrome 2; neurology; pediatric
    DOI:  https://doi.org/10.3389/fped.2021.700898
  34. Methods Mol Biol. 2021 ;2353 137-154
      Iron-Sulfur (Fe-S) clusters function as core prosthetic groups known to modulate the activity of metalloenzymes, act as trafficking vehicles for biological iron and sulfur, and participate in several intersecting metabolic pathways. The formation of these clusters is initiated by a class of enzymes called cysteine desulfurases, whose primary function is to shuttle sulfur from the amino acid L-cysteine to a variety of sulfur transfer proteins involved in Fe-S cluster synthesis as well as in the synthesis of other thiocofactors. Thus, sulfur and Fe-S cluster metabolism are connected through shared enzyme intermediates, and defects in their associated pathways cause a myriad of pleiotropic phenotypes, which are difficult to dissect. Post-transcriptionally modified transfer RNA (tRNA) represents a large class of analytes whose synthesis often requires the coordinated participation of sulfur transfer and Fe-S enzymes. Therefore, these molecules can be used as biologically relevant readouts for cellular Fe and S status. Methods employing LC-MS technology provide a valuable experimental tool to determine the relative levels of tRNA modification in biological samples and, consequently, to assess genetic, nutritional, and environmental factors modulating reactions dependent on Fe-S clusters. Herein, we describe a robust method for extracting RNA and analytically evaluating the degree of Fe-S-dependent and -independent tRNA modifications via an LC-MS platform.
    Keywords:  Bacteria; Iron-sulfur cluster; LC-MS; RNA extraction; Sulfur metabolism; Thionucleosides; tRNA; tRNA modification
    DOI:  https://doi.org/10.1007/978-1-0716-1605-5_8
  35. Methods Mol Biol. 2021 ;2320 183-192
      Heart failure is caused by a complicated pathogenic process and has a poor prognosis. Quality of life is often impaired due to repeated hospitalization. Integrative analysis of the morphological, physiological, and molecular profiles of cardiomyocytes, which are responsible mainly for heart contraction, may lead to a deeper understanding of the pathogenesis of heart failure. However, unlike other types of cells, cardiomyocytes are relatively large, vulnerable to stress, and difficult to use for single-cell analysis. With some ingenuity, we have established a single-cardiomyocyte analysis pipeline. Here, we describe the procedure for single-cell RNA sequencing of adult mouse cardiomyocytes from isolation to analysis.
    Keywords:  Cardiomyocytes; Full-length cDNA library construction; Langendorff perfusion; Single-cell RNA-seq
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_18
  36. Elife. 2021 Jul 19. pii: e69344. [Epub ahead of print]10
      Selection against deleterious mitochondrial mutations is facilitated by germline processes, lowering the risk of genetic diseases. How selection works is disputed: experimental data are conflicting and previous modelling work has not clarified the issues. Here we develop computational and evolutionary models that compare the outcome of selection at the level of individuals, cells and mitochondria. Using realistic de novo mutation rates and germline development parameters from mouse and humans, the evolutionary model predicts the observed prevalence of mitochondrial mutations and diseases in human populations. We show the importance of organelle-level selection, seen in the selective pooling of mitochondria into the Balbiani body, in achieving high-quality mitochondria at extreme ploidy in mature oocytes. Alternative mechanisms debated in the literature, bottlenecks and follicular atresia, are unlikely to account for the clinical data, because neither process effectively eliminates mitochondrial mutations under realistic conditions. Our findings explain the major features of female germline architecture, notably the longstanding paradox of over-proliferation of primordial germ cells followed by massive loss. The near-universality of these processes across animal taxa makes sense in light of the need to maintain mitochondrial quality at extreme ploidy in mature oocytes, in the absence of sex and recombination.
    Keywords:  evolutionary biology; none
    DOI:  https://doi.org/10.7554/eLife.69344
  37. Methods Mol Biol. 2021 ;2320 29-33
      The human adult heart consists of approximately four billion cardiomyocytes, which do not possess self-renewal abilities. Severe myocardial infarction and dilated cardiomyopathy result in the loss of more than a billion cardiomyocytes. Induced pluripotent stem cells (iPSCs) can differentiate into various types of cells. Due to this ability, these cells could potentially serve as a new resource for cell therapy. Many studies have utilized cardiomyocytes derived from iPSCs for myocardial regeneration therapy. To obtain large number of cardiomyocytes for transplantation, we need to develop effective methods that would allow us to dissociate multiple cardiomyocyte aggregates simultaneously. Here, we describe a method to efficiently dissociate large number of iPSC-derived cardiomyocyte aggregates.
    Keywords:  Aggregate; Cardiomyocyte; Dissociate; Induced pluripotent stem cells; Large scale culture
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_4
  38. BMC Bioinformatics. 2021 Jul 20. 22(1): 374
      BACKGROUND: As exome sequencing (ES) integrates into clinical practice, we should make every effort to utilize all information generated. Copy-number variation can lead to Mendelian disorders, but small copy-number variants (CNVs) often get overlooked or obscured by under-powered data collection. Many groups have developed methodology for detecting CNVs from ES, but existing methods often perform poorly for small CNVs and rely on large numbers of samples not always available to clinical laboratories. Furthermore, methods often rely on Bayesian approaches requiring user-defined priors in the setting of insufficient prior knowledge. This report first demonstrates the benefit of multiplexed exome capture (pooling samples prior to capture), then presents a novel detection algorithm, mcCNV ("multiplexed capture CNV"), built around multiplexed capture.RESULTS: We demonstrate: (1) multiplexed capture reduces inter-sample variance; (2) our mcCNV method, a novel depth-based algorithm for detecting CNVs from multiplexed capture ES data, improves the detection of small CNVs. We contrast our novel approach, agnostic to prior information, with the the commonly-used ExomeDepth. In a simulation study mcCNV demonstrated a favorable false discovery rate (FDR). When compared to calls made from matched genome sequencing, we find the mcCNV algorithm performs comparably to ExomeDepth.
    CONCLUSION: Implementing multiplexed capture increases power to detect single-exon CNVs. The novel mcCNV algorithm may provide a more favorable FDR than ExomeDepth. The greatest benefits of our approach derive from (1) not requiring a database of reference samples and (2) not requiring prior information about the prevalance or size of variants.
    Keywords:  Capture; Copy number variation; Exome sequencing
    DOI:  https://doi.org/10.1186/s12859-021-04246-w
  39. Autophagy. 2021 Jul 18. 1-3
      Mitophagy, the clearance of surplus or damaged mitochondria or mitochondrial parts by autophagy, is important for maintenance of cellular homeostasis. Whereas knowledge on programmed and stress-induced mitophagy is increasing, much less is known about mechanisms of basal mitophagy. Recently, we identified SAMM50 (SAMM50 sorting and assembly machinery component) as a receptor for piecemeal degradation of components of the sorting and assembly machinery (SAM) complex and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 interacts directly with Atg8-family proteins through a canonical LIR motif and with SQSTM1/p62 to mediate basal piecemeal mitophagy. During a metabolic switch to oxidative phosphorylation (OXPHOS), SAMM50 cooperates with SQSTM1 to mediate efficient piecemeal mitophagy.
    Keywords:  Atg8; MICOS; OXPHOS; SAMM50; SQSTM1; basal; metabolic switch; p62; piecemeal mitophagy
    DOI:  https://doi.org/10.1080/15548627.2021.1953846
  40. Nature. 2021 Jul 21.
      The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. Here, through a spatiotemporally resolved proximity labelling screen followed by quantitative proteomics, we identify the lysosomal membrane protein Niemann-Pick type C1 (NPC1) as a cofactor in the trafficking of STING. NPC1 interacts with STING and recruits it to the lysosome for degradation in both human and mouse cells. Notably, we find that knockout of Npc1 'primes' STING signalling by physically linking or 'tethering' STING to SREBP2 trafficking. Loss of NPC1 protein also 'boosts' STING signalling by blocking lysosomal degradation. Both priming and boosting of STING signalling are required for severe neurological disease in the Npc1-/- mouse. Genetic deletion of Sting1 (the gene that encodes STING) or Irf3, but not that of Cgas, significantly reduced the activation of microglia and relieved the loss of Purkinje neurons in the cerebellum of Npc1-/- mice, leading to improved motor function. Our study identifies a cGAS- and cGAMP-independent mode of STING activation that affects neuropathology and provides a therapeutic target for the treatment of Niemann-Pick disease type C.
    DOI:  https://doi.org/10.1038/s41586-021-03762-2
  41. Methods Mol Biol. 2021 ;2320 35-51
      The most common method for isolating cells of interest is an antibody method that recognizes cell surface antigens. However, specific surface antigens for many cell types have not been identified. We have developed the microRNA (miRNA)-responsive synthetic mRNA systems (miRNA switches), which isolate target cells based on endogenous miRNA activity. In this chapter, we describe protocols for isolating human pluripotent stem cell (hPSC)-derived cardiomyocytes using miRNA switches with or without cell sorting.
    Keywords:  Cardiomyocytes; Human pluripotent stem cells; Isolation; Synthetic modified mRNA; miRNA switch
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_5
  42. Methods Mol Biol. 2021 ;2320 111-119
      Induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) have been shown to have great potential to play a key role in investigating cardiac diseases in vitro. Multielectrode array (MEA) system is sometimes preferable to patch-clamp in electrophysiological experiments in terms of several advantages. Here we show our protocol of electrophysiological examinations using MEA.
    Keywords:  Electrophysiology; Extracellular recording; Field potential duration; Human-induced pluripotent stem cell-derived cardiomyocyte; Multielectrode array
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_12
  43. Nat Commun. 2021 07 20. 12(1): 4418
      Studies of the genetic basis of complex traits have demonstrated a substantial role for common, small-effect variant polygenic burden (PB) as well as large-effect variants (LEV, primarily rare). We identify sufficient conditions in which GWAS-derived PB may be used for well-powered rare pathogenic variant discovery or as a sample prioritization tool for whole-genome or exome sequencing. Through extensive simulations of genetic architectures and generative models of disease liability with parameters informed by empirical data, we quantify the power to detect, among cases, a lower PB in LEV carriers than in non-carriers. Furthermore, we uncover clinically useful conditions wherein the risk derived from the PB is comparable to the LEV-derived risk. The resulting summary-statistics-based methodology (with publicly available software, PB-LEV-SCAN) makes predictions on PB-based LEV screening for 36 complex traits, which we confirm in several disease datasets with available LEV information in the UK Biobank, with important implications on clinical decision-making.
    DOI:  https://doi.org/10.1038/s41467-021-24387-z
  44. Methods Mol Biol. 2021 ;2320 295-302
      Recent evidence has provided exciting proof of concepts for the use of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) for cardiac repair; however, large animal studies, which better reflect human disease, are required for clinical application. Here, we describe how to create myocardial infarction in cynomolgus monkey followed by transplantation of PSC-CMs. This method ensures the establishment of a myocardial infarction model and enables reliable PSC-CM transplantation.
    Keywords:  Cynomolgus monkey; Left anterior descending coronary artery; Myocardial infarction; Pluripotent stem cell-derived cardiomyocyte; Transplantation
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_25
  45. Methods Mol Biol. 2021 ;2320 171-180
      Engineered cardiac tissue (ECT) derived from human induced pluripotent stem cells (iPSCs) can replicate human heart in vitro and be applied to drug discovery and heart disease models. The contraction force of ECT is an important indicator of its function and of the disease phenotype. Here we describe a construction method of ECT using the Flexcell® Tissue Train® culture system and a contraction force measurement method based on the Frank-Starling law.
    Keywords:  Cardiomyocytes; Contraction force; Engineered cardiac tissue; Frank–Starling law; Human induced pluripotent stem cells; Twitch force
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_17
  46. Int J Mol Sci. 2021 Jul 09. pii: 7369. [Epub ahead of print]22(14):
      Cancer is a serious health problem with a high mortality rate worldwide. Given the relevance of mitochondria in numerous physiological and pathological mechanisms, such as adenosine triphosphate (ATP) synthesis, apoptosis, metabolism, cancer progression and drug resistance, mitochondrial genome (mtDNA) analysis has become of great interest in the study of human diseases, including cancer. To date, a high number of variants and mutations have been identified in different types of tumors, which coexist with normal alleles, a phenomenon named heteroplasmy. This mechanism is considered an intermediate state between the fixation or elimination of the acquired mutations. It is suggested that mutations, which confer adaptive advantages to tumor growth and invasion, are enriched in malignant cells. Notably, many recent studies have reported a heteroplasmy-shifting phenomenon as a potential shaper in tumor progression and treatment response, and we suggest that each cancer type also has a unique mitochondrial heteroplasmy-shifting profile. So far, a plethora of data evidencing correlations among heteroplasmy and cancer-related phenotypes are available, but still, not authentic demonstrations, and whether the heteroplasmy or the variation in mtDNA copy number (mtCNV) in cancer are cause or consequence remained unknown. Further studies are needed to support these findings and decipher their clinical implications and impact in the field of drug discovery aimed at treating human cancer.
    Keywords:  cancer; heteroplasmy; heteroplasmy shifting; mitochondrial DNA; mitochondrial mutations
    DOI:  https://doi.org/10.3390/ijms22147369
  47. Mov Disord. 2021 Jul 20.
      BACKGROUND: Mutations in the mitochondrial DNA polymerase gamma are causing a wide phenotypic spectrum including ataxia as one of the most common presentations.OBJECTIVE: The objective of this study was to determine the course of disease of polymerase gamma-related ataxia.
    METHODS: In a prospective natural history study, we assessed 24 adult ataxia patients with biallelic polymerase gamma mutations for (1) severity of cerebellar dysfunction using the Scale for the Assessment and Rating of Ataxia score, (2) presence of nonataxia signs using the Inventory of Non-Ataxia Symptoms, (3) gray- and white-matter changes in brain MRI, and (4) findings in nerve conduction studies.
    RESULTS: Assessment included follow-up visits up to 11.6 years. The Scale for the Assessment and Rating of Ataxia showed a mean annual increase of 1.02 ± 0.78 points/year. Disease progression was faster in patients with age at onset ≤ 30 years (1.5 Scale for the Assessment and Rating of Ataxia points/year) than with later onset (0.5 points/year); P = 0.008. The Inventory of Non-Ataxia Symptoms count increased by 0.30 ± 0.4 points/year. External ophthalmoplegia, brain stem oculomotor signs, areflexia, and sensory deficits were the most common nonataxic features. On MRI cerebellar atrophy was mild. T2 signal alterations affected mostly cerebellar white matter, middle cerebellar peduncles, thalamus, brain stem, and occipital and frontal white matter. Within 4 years, progression was primarily observed in the context of repeated epileptic seizures. Nerve conduction studies revealed axonal sensory peripheral neuropathy with mild motor nerve involvement. Exploratory sample size calculation implied 38 patients per arm as sufficient to detect a reduction of progression by 50% in hypothetical interventions within a 1-year trial.
    CONCLUSION: The results recommend the Scale for the Assessment and Rating of Ataxia as a primary outcome measure for future interventional trials in polymerase gamma-related ataxia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
    Keywords:  POLG; ataxia; natural history; polymerase gamma
    DOI:  https://doi.org/10.1002/mds.28713
  48. Sci Adv. 2021 Jul;pii: eabg5733. [Epub ahead of print]7(30):
      Hepatic nerves have a complex role in synchronizing liver metabolism. Here, we used three-dimensional (3D) immunoimaging to explore the integrity of the hepatic nervous system in experimental and human nonalcoholic fatty liver disease (NAFLD). We demonstrate parallel signs of mild degeneration and axonal sprouting of sympathetic innervations in early stages of experimental NAFLD and a collapse of sympathetic arborization in steatohepatitis. Human fatty livers display a similar pattern of sympathetic nerve degeneration, correlating with the severity of NAFLD pathology. We show that chronic sympathetic hyperexcitation is a key factor in the axonal degeneration, here genetically phenocopied in mice deficient of the Rac-1 activator Vav3. In experimental steatohepatitis, 3D imaging reveals a severe portal vein contraction, spatially correlated with the extension of the remaining nerves around the portal vein, enlightening a potential intrahepatic neuronal mechanism of portal hypertension. These fundamental alterations in liver innervation and vasculature uncover previously unidentified neuronal components in NAFLD pathomechanisms.
    DOI:  https://doi.org/10.1126/sciadv.abg5733
  49. Hum Mutat. 2021 Jul 23.
      The congenital sideroblastic anemias (CSAs) are a heterogeneous group of inherited disorders of erythropoiesis characterized by pathologic deposits of iron in the mitochondria of developing erythroblasts. Mutations in the mitochondrial glycine carrier SLC25A38 cause the most common recessive form of CSA. Nonetheless, the disease is still rare, there being fewer than 70 reported families. Here we describe the clinical phenotype and genotypes of 31 individuals from 24 families, including 11 novel mutations. We also review the spectrum of reported mutations and genotypes associated with the disease, describe the unique localization of missense mutations in transmembrane domains and account for the presence of several alleles in different populations. This article is protected by copyright. All rights reserved.
    Keywords:  Erythropoiesis; Genetics; Hematopoietic Stem Cell Transplantation; Iron; Sideroblastic anemia
    DOI:  https://doi.org/10.1002/humu.24267
  50. Front Mol Biosci. 2021 ;8 701477
      Mass spectrometry-based proteomics methods are widely used to identify and quantify protein complexes involved in diverse biological processes. Specifically, tandem mass spectrometry methods represent an accurate and sensitive strategy for identifying protein-protein interactions. However, most of these approaches provide only lists of peptide fragments associated with a target protein, without performing further analyses to discriminate physical or functional protein-protein interactions. Here, we present the PPI-MASS web server, which provides an interactive analytics platform to identify protein-protein interactions with pharmacological potential by filtering a large protein set according to different biological features. Starting from a list of proteins detected by MS-based methods, PPI-MASS integrates an automatized pipeline to obtain information of each protein from freely accessible databases. The collected data include protein sequence, functional and structural properties, associated pathologies and drugs, as well as location and expression in human tissues. Based on this information, users can manipulate different filters in the web platform to identify candidate proteins to establish physical contacts with a target protein. Thus, our server offers a simple but powerful tool to detect novel protein-protein interactions, avoiding tedious and time-consuming data postprocessing. To test the web server, we employed the interactome of the TRPM4 and TMPRSS11a proteins as a use case. From these data, protein-protein interactions were identified, which have been validated through biochemical and bioinformatic studies. Accordingly, our web platform provides a comprehensive and complementary tool for identifying protein-protein complexes assisting the future design of associated therapies.
    Keywords:  PPI-MASS; TMPRSS11A; TRPM4; mass spectrometry-based proteomics; protein-protein interaction
    DOI:  https://doi.org/10.3389/fmolb.2021.701477
  51. Protein Eng Des Sel. 2021 Feb 15. pii: gzab019. [Epub ahead of print]34
      Machine learning is a useful computational tool for large and complex tasks such as those in the field of enzyme engineering, selection and design. In this review, we examine enzyme-related applications of machine learning. We start by comparing tools that can identify the function of an enzyme and the site responsible for that function. Then we detail methods for optimizing important experimental properties, such as the enzyme environment and enzyme reactants. We describe recent advances in enzyme systems design and enzyme design itself. Throughout we compare and contrast the data and algorithms used for these tasks to illustrate how the algorithms and data can be best used by future designers.
    Keywords:  deep learning; enzyme design; enzyme engineering; machine learning
    DOI:  https://doi.org/10.1093/protein/gzab019
  52. Hum Mutat. 2021 Jul 23.
      Phenotypes of some rare genetic diseases are atypical and it is a challenge for pediatric intensive care units (PICUs) to diagnose and manage such patients in an emergency. In this study, we investigated 58 PICU patients (39 deceased and 19 surviving) in critical ill status or died shortly without a clear etiology. Whole exome sequencing was performed of 103 DNA samples from their families. Disease-causing single nucleotide variants (SNVs) and copy number variants (CNVs) were identified to do genotype-phenotypes analysis. In total, 27 (46.6%) patients received a genetic diagnosis. We identified 34 pathogenic or likely pathogenic SNVs from 26 genes, which related to at least 19 rare diseases. Each rare disease involved an isolated patient except two patients caused by the same gene ACAT1. The genotypic spectrum was expanded by 23 novel SNVs from gene MARS1, PRRT2, TBCK, TOR1A, ECE1, ARX, ZEB2, ACAT1, CPS1, VWF, NBAS, COG4, and INVS. We also identified two novel pathogenic CNVs. Phenotypes associated with respiratory, multiple congenital anomalies (MCA), neuromuscular, or metabolic disorders were the most common. 20 patients (74.1%) accompanied severe infection, 19 patients (70.1%) died. In summary, our findings expanded the genotypes and phenotypes of 19 rare diseases from PICU with complex characteristics. This article is protected by copyright. All rights reserved.
    Keywords:  Pediatric intensive care unit (PICU); exome sequencing (ES); genetic disease; phenotype; variant
    DOI:  https://doi.org/10.1002/humu.24266
  53. Methods Mol Biol. 2021 ;2320 261-281
      Identifying causative genes in a given phenotype or disease model is important for biological discovery and drug development. The recent development of the CRISPR/Cas9 system has enabled unbiased and large-scale genetic perturbation screens to identify causative genes by knocking out many genes in parallel and selecting cells with desired phenotype of interest. However, compared to cancer cell lines, human somatic cells including cardiomyocytes (CMs), neuron cells, and endothelial cells are not easy targets of CRISPR screens because CRISPR screens require a large number of isogenic cells to be cultured and thus primary cells from patients are not ideal. The combination of CRISPR screens with induced pluripotent stem cell (iPSC) technology would be a powerful tool to identify causative genes and pathways because iPSCs can be expanded easily and differentiated to any cell type in principle. Here we describe a robust protocol for CRISPR screening using human iPSCs. Because each screening is different and needs to be customized depending on the cell types and phenotypes of interest, we show an example of CRISPR knockdown screening using CRISPRi system to identify essential genes to differentiate iPSCs to CMs.
    Keywords:  CRISPR/Cas9; Cardiomyocytes; Genome editing; Induced pluripotent stem cells
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_23
  54. Methods Mol Biol. 2021 ;2320 285-293
      Myocardial infarction is caused by a lack of oxygen due to blockage of a coronary artery and is a common cause of heart failure. Despite therapeutic advances, the prognosis of patients with heart failure is poor. One of the reasons is that present therapeutic approaches do not restore the loss of cardiac tissue. Stem cell-based therapies have the potential to regenerate the myocardium, and numerous studies using stem cells have shown improved cardiac function and reduced infarct size. In this chapter, we describe our methodology for transplanting human induced pluripotent stem cell-derived cardiomyocytes into immunodeficient mouse hearts with myocardial infarction.
    Keywords:  Cardiomyocyte transplantation; Human induced pluripotent stem cell-derived cardiomyocytes; Myocardial infarction; Regeneration therapy
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_24
  55. Biosystems. 2021 Jul 16. pii: S0303-2647(21)00135-0. [Epub ahead of print]208 104488
      Presently a mechanism of permeability transition pore (PTP) opening was proposed and discussed. This mechanism is based on mechanical stretching of inner mitochondrial membrane (IMM) caused by mitochondrial swelling (MS). The latter is induced by osmotic pressure generated by solute imbalance between the matrix and the surrounding cyto(sarco)plasm. Modelled by the Monte-Carlo method, an IMM fragment of 350 simulated biological molecules exhibited formation of micro-domains containing two protein and seven phospholipid molecules. The energies (-0.191 eV per molecule) in these micro-domains were significantly larger than those (-0.375 eV per molecule) of other parts of the IMM fragment. Stretching forces applied to such domains expanded them much more than other parts of the IMM fragment. We identify these micro-domains as the PTPs. Both linear and nonlinear functions were used for the strain-stress relation of the IMM fragment, with nonlinear effects more important at large IMM stretching strains. Thus, two main factors are incorporated into the PTP opening mechanism: (1) presence of micro-domains in the IMM structure and (2) IMM stretching stress caused by MS. Taking into account both of these factors, the equation for the probability of PTP opening was deduced, with matrix Ca2+ and H+ ionic concentrations as its parameters. Note that the equation deduced was similar to an earlier reported empirical equation describing PTP opening dynamics. This correspondence provides support to the presently proposed mechanism. Thus, a new look at the PTP opening mechanism is provided, of interest to various research areas related to mitochondrial biophysics.
    Keywords:  IMM stretching Strain; Inner mitochondrial membrane (IMM); Micro-domain; Monte-Carlo simulations; Permeability transition pore (PTP) opening dynamics; Swelling
    DOI:  https://doi.org/10.1016/j.biosystems.2021.104488
  56. Front Cell Dev Biol. 2021 ;9 612476
      Parkinson's disease (PD) is an age-related neurodegenerative disorder affecting millions of people worldwide. The disease is characterized by the progressive loss of dopaminergic neurons and spread of Lewy pathology (α-synuclein aggregates) in the brain but the pathogenesis remains elusive. PD presents substantial clinical and genetic variability. Although its complex etiology and pathogenesis has hampered the breakthrough in targeting disease modification, recent genetic tools advanced our approaches. As such, mitochondrial dysfunction has been identified as a major pathogenic hub for both familial and sporadic PD. In this review, we summarize the effect of mutations in 11 PARK genes (SNCA, PRKN, PINK1, DJ-1, LRRK2, ATP13A2, PLA2G6, FBXO7, VPS35, CHCHD2, and VPS13C) on mitochondrial function as well as their relevance in the formation of Lewy pathology. Overall, these genes play key roles in mitochondrial homeostatic control (biogenesis and mitophagy) and functions (e.g., energy production and oxidative stress), which may crosstalk with the autophagy pathway, induce proinflammatory immune responses, and increase oxidative stress that facilitate the aggregation of α-synuclein. Thus, rectifying mitochondrial dysregulation represents a promising therapeutic approach for neuroprotection in PD.
    Keywords:  PARK genes; Parkinson’s disease; mitochondria; mitophagy; α-synuclein pathology
    DOI:  https://doi.org/10.3389/fcell.2021.612476
  57. J Cell Mol Med. 2021 Jul 19.
      Mitochondria are central eukaryotic organelles in cellular metabolism and ATP production. Mitochondrial DNA (mtDNA) alterations have been implicated in the development of colorectal cancer (CRC). However, there are few reports on the association between mtDNA haplogroups or single nucleotide polymorphisms (SNPs) and the risk of CRC. The mtDNA of 286 Northern Han Chinese CRC patients were sequenced by next-generation sequencing technology. MtDNA data from 811 Han Chinese population controls were collected from two public data sets. Then, logistic regression analysis was used to determine the effect of mtDNA haplogroup or SNP on the risk of CRC. We found that patients with haplogroup M7 exhibited a reduced risk of CRC when compared to patients with other haplogroups (odds ratio [OR] = 0.532, 95% confidence interval [CI] = 0.285-0.937, p = 0.036) or haplogroup B (OR = 0.477, 95% CI = 0.238-0.916, p = 0.030). Furthermore, haplogroup M7 was still associated with the risk of CRC when the validation and combined control cohort were used. In addition, several haplogroup M7 specific SNPs, including 199T>C, 4071C>T and 6455C>T, were significantly associated with the risk of CRC. Our results indicate the risk potential of mtDNA haplogroup M7 and SNPs in CRC in Northern China.
    Keywords:  colorectal cancer risk; haplogroup; mitochondria; single nucleotide polymorphisms
    DOI:  https://doi.org/10.1111/jcmm.16789
  58. J Leukoc Biol. 2021 Jul 20.
      Nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 inflammasome and mitophagy play an important role in cytokine release and diabetes progression; however, the role of saturated fatty acid that is induced under such conditions remains little explored. Therefore, the present study evaluates mechanisms regulating mitophagy and inflammasome activation in primary murine diabetic and palmitate-conditioned wild-type (WT) peritoneal macrophages. Peritoneal macrophage, from the diabetic mice and WT mice, challenged with LPS/ATP and palmitate/LPS/ATP, respectively, showed dysfunctional mitochondria as assessed by their membrane potential, mitochondrial reactive oxygen species (mtROS) production, and mitochondrial DNA (mtDNA) release. A defective mitophagy was observed in the diabetic and palmitate-conditioned macrophages stimulated with LPS/ATP as assessed by translocation of PTEN-induced kinase 1 (PINK1)/Parkin or p62 in the mitochondrial fraction. Consequently, increased apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) oligomerization, caspase-1 activation, and IL1β secretion were observed in LPS/ATP stimulated diabetic and palmitate-conditioned macrophages. LPS/ATP induced Forkhead box O3a (FOXO3a) binding to PINK1 promoter and increased PINK1 mRNA expression in WT macrophages. However, PINK1 mRNA and protein expression were significantly decreased in diabetic and palmitate-conditioned macrophages in response to LPS/ATP. Palmitate-induced acetyl CoA promoted FOXO3a acetylation, which prevented LPS/ATP-induced FOXO3a binding to the PINK1 promoter. C646 (P300 inhibitor) and SRT1720 (SIRT1 activator) prevented FOXO3a acetylation and restored FOXO3a binding to the PINK1 promoter, PINK1 mRNA expression, and mitophagy in palmitate-conditioned macrophages treated with LPS/ATP. Also, a significant decrease in the LPS/ATP-induced mtROS production, mtDNA release, ASC oligomerization, caspase-1 activation, and IL-1β release was observed in the palmitate-conditioned macrophages. Similarly, modulation of FOXO3a acetylation also prevented LPS/ATP-induced mtDNA release and inflammasome activation in diabetic macrophages. Therefore, FOXO3a acetylation regulates PINK1-dependent mitophagy and inflammasome activation in the palmitate-conditioned and diabetic macrophages.
    Keywords:  ASC oligomerization; NLRP3 inflammasome; PINK1-Parkin mitophagy; diabetic mice; palmitate
    DOI:  https://doi.org/10.1002/JLB.3A0620-348RR
  59. Asian Bioeth Rev. 2021 Sep;13(3): 317-334
      Mitochondrial replacement techniques (MRTs) are designed to allow couples to have children without passing on mitochondrial diseases. Recently, Giulia Cavaliere and César Palacios-González argued that prospective parents have the right to use MRTs to pursue genetic relatedness, such that some same-sex couples and/or polygamous triads could use the process to impart genetic relatedness between a child and more of its caregivers. Although MRTs carry medical risks, Cavaliere and Palacios-González contend that because MRTs are identity-affecting, they do not cause harm to an existing human being, and our intuitions otherwise arise from the non-identity problem. Here, I review several attempts to address the non-identity problem, and propose a solution to the problem. Furthermore, I argue that regardless of one's stance on whether MRTs are identity-affecting, the use of MRTs to pursue genetic relatedness alone falls outside the scope of the medical profession, as they involve substantive medical risk for no medical benefit.
    Keywords:  Genetic relatedness; Mitochondrial replacement; Non-identity problem; Parallel cases; Reproductive freedom
    DOI:  https://doi.org/10.1007/s41649-021-00176-0
  60. Methods Mol Biol. 2021 ;2320 121-133
      Electrophysiological analysis of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using a patch-clamp technique enables the most precise evaluation of electrophysiological properties in single cells. Compared to multielectrode array (MEA) and membrane voltage imaging, patch-clamp recordings offer quantitative measurements of action potentials, and the relevant ionic currents which are essential for the research of disease modeling of inherited arrhythmias, safety pharmacology, and drug discovery using hiPSC-CMs. In this chapter, we describe the detail flow of patch-clamp recordings in hiPSC-CMs.
    Keywords:  Action potential recording; Electrophysiology; Human-induced pluripotent stem cell-derived cardiomyocyte; Patch-clamp technique; Voltage clamp
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_13
  61. Nat Commun. 2021 07 19. 12(1): 4387
      Targeted high-throughput DNA sequencing is a primary approach for genomics and molecular diagnostics, and more recently as a readout for DNA information storage. Oligonucleotide probes used to enrich gene loci of interest have different hybridization kinetics, resulting in non-uniform coverage that increases sequencing costs and decreases sequencing sensitivities. Here, we present a deep learning model (DLM) for predicting Next-Generation Sequencing (NGS) depth from DNA probe sequences. Our DLM includes a bidirectional recurrent neural network that takes as input both DNA nucleotide identities as well as the calculated probability of the nucleotide being unpaired. We apply our DLM to three different NGS panels: a 39,145-plex panel for human single nucleotide polymorphisms (SNP), a 2000-plex panel for human long non-coding RNA (lncRNA), and a 7373-plex panel targeting non-human sequences for DNA information storage. In cross-validation, our DLM predicts sequencing depth to within a factor of 3 with 93% accuracy for the SNP panel, and 99% accuracy for the non-human panel. In independent testing, the DLM predicts the lncRNA panel with 89% accuracy when trained on the SNP panel. The same model is also effective at predicting the measured single-plex kinetic rate constants of DNA hybridization and strand displacement.
    DOI:  https://doi.org/10.1038/s41467-021-24497-8
  62. Aging (Albany NY). 2021 07 20. undefined(undefined):
      
    Keywords:  aging; biomarker; circulating cell-free mitochondrial DNA; exosomes; extracellular vesicles; microvesicles; mitochondria; mitochondrial DNA
    DOI:  https://doi.org/10.18632/aging.203358
  63. Nature. 2021 Jul 21.
      
    Keywords:  Cancer; Cell biology; Metabolism
    DOI:  https://doi.org/10.1038/d41586-021-01943-7
  64. J Inherit Metab Dis. 2021 Jul 23.
      Propionic aciduria (PA) is caused by deficiency of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). Due to inefficient propionate catabolism patients are endangered by life-threatening ketoacidotic crisis. Protein and amino acid restriction are major therapeutic pillars. However, long-term complications like neurological deterioration and cardiac abnormalities cannot be prevented. Chronic kidney disease (CKD), which is a well-known characteristic of methylmalonic aciduria two enzymatic steps down-stream from PCC, has been recognized as a novel late-onset complication in PA. The pathophysiology of CKD in PA is unclear. We investigated mitochondrial structure and metabolism in human renal tubular cells of healthy controls and PA patients. The cells were exposed to either standard cell culture conditions (NT), high protein (HP) or high concentrations of isoleucine and valine (I/V). Mitochondrial morphology changed to condensed, fractured morphology in PA cells irrespective of the cell culture medium. HP and I/V exposure, however, potentiated oxidative stress in PA cells. Mitochondrial mass was enriched in PA cells, and further increased by HP and I/V exposure suggesting a need for compensation. Alterations in the tricarboxylic acid cycle intermediates and accumulation of medium- and long-chain acylcarnitines pointed to altered mitochondrial energy metabolism. Mitophagy was silenced while autophagy as cellular defense mechanisms was highly active in PA cells. The data demonstrate that PA is associated with renal mitochondrial damage which is aggravated by protein and I/V load. Preservation of mitochondrial energy homeostasis in renal cells may be a potential future therapeutic target. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1002/jimd.12419
  65. J Biol Chem. 2021 Jul 16. pii: S0021-9258(21)00774-2. [Epub ahead of print] 100972
      Heme plays a critical role in catalyzing life-essential redox reactions in all cells, and its synthesis must be tightly balanced with cellular requirements. Heme synthesis in eukaryotes is tightly regulated by the mitochondrial AAA+ unfoldase CLPX (caseinolytic mitochondrial matrix peptidase chaperone subunit X), which promotes heme synthesis by activation of δ-aminolevulinate synthase (ALAS/Hem1) in yeast and regulates turnover of ALAS1 in human cells. However, the specific mechanisms by which CLPX regulates heme synthesis are unclear. In this study, we interrogated the mechanisms by which CLPX regulates heme synthesis in erythroid cells. Quantitation of enzyme activity and protein degradation showed that ALAS2 stability and activity were both increased in the absence of CLPX, suggesting that CLPX primarily regulates ALAS2 by control of its turnover, rather than its activation. However, we also showed that CLPX is required for PPOX (protoporphyinogen IX oxidase) activity and maintenance of FECH (ferrochelatase) levels, which are the terminal enzymes in heme synthesis, likely accounting for the heme deficiency and porphyrin accumulation observed in Clpx-/- cells. Lastly, CLPX is required for iron utilization for hemoglobin synthesis during erythroid differentiation. Collectively, our data show that the role of CLPX in yeast ALAS/Hem1 activation is not conserved in vertebrates as vertebrates rely on CLPX to regulate ALAS turnover as well as PPOX and FECH activity. Our studies reveal that CLPX mutations may cause anemia and porphyria via dysregulation of ALAS, FECH and PPOX activities, as well as of iron metabolism.
    DOI:  https://doi.org/10.1016/j.jbc.2021.100972
  66. Methods Mol Biol. 2021 ;2320 193-217
      RNA sequencing profiles and characterizes cell and tissue samples, giving important insights into molecular mechanisms. Such data is imperative for cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) and used in related translational and basic research. Here we provide reliable protocols to extract differentially expressed genes in iPSC-CMs with RNA sequencing.
    Keywords:  Gene expression; Genome-wide analysis; Molecular biology; Next-generation sequencer; RNA sequencing; Transcriptome
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_19
  67. Biochim Biophys Acta Mol Cell Res. 2021 Jul 15. pii: S0167-4889(21)00153-1. [Epub ahead of print] 119099
      Cellular senescence generates a permanent cell cycle arrest, characterized by apoptosis resistance and a pro-inflammatory senescence-associated secretory phenotype (SASP). Physiologically, senescent cells promote tissue remodeling during development and after injury. However, when accumulated over a certain threshold as happens during aging or after cellular stress, senescent cells contribute to the functional decline of tissues, participating in the generation of several diseases. Cellular senescence is accompanied by increased mitochondrial metabolism. How mitochondrial function is regulated and what role it plays in senescent cell homeostasis is poorly understood. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contacts (MERCs). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate receptors (IP3Rs), a family of three Ca2+ release channels activated by a ligand (IP3). IP3R-mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU), where it modulates the activity of several enzymes and transporters impacting its bioenergetic and biosynthetic function. Here, we review the possible connection between ER to mitochondria Ca2+ transfer and senescence. Understanding the pathways that contribute to senescence is essential to reveal new therapeutic targets that allow either delaying senescent cell accumulation or reduce senescent cell burden to alleviate multiple diseases.
    Keywords:  MERCs; calcium; metabolism; mitochondria; senescence
    DOI:  https://doi.org/10.1016/j.bbamcr.2021.119099
  68. Eur J Hum Genet. 2021 Jul 19.
      A primary challenge in understanding disease biology from genome-wide association studies (GWAS) arises from the inability to directly implicate causal genes from association data. Integration of multiple-omics data sources potentially provides important functional links between associated variants and candidate genes. Machine-learning is well-positioned to take advantage of a variety of such data and provide a solution for the prioritization of disease genes. Yet, classical positive-negative classifiers impose strong limitations on the gene prioritization procedure, such as a lack of reliable non-causal genes for training. Here, we developed a novel gene prioritization tool-Gene Prioritizer (GPrior). It is an ensemble of five positive-unlabeled bagging classifiers (Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, Adaptive Boosting), that treats all genes of unknown relevance as an unlabeled set. GPrior selects an optimal composition of algorithms to tune the model for each specific phenotype. Altogether, GPrior fills an important niche of methods for GWAS data post-processing, significantly improving the ability to pinpoint disease genes compared to existing solutions.
    DOI:  https://doi.org/10.1038/s41431-021-00930-w
  69. PLoS One. 2021 ;16(7): e0254611
      Retinal ganglion cells (RGCs) are thought to be strictly postsynaptic within the retina. They carry visual signals from the eye to the brain, but do not make chemical synapses onto other retinal neurons. Nevertheless, they form gap junctions with other RGCs and amacrine cells, providing possibilities for RGC signals to feed back into the inner retina. Here we identified such feedback circuitry in the salamander and mouse retinas. First, using biologically inspired circuit models, we found mutual inhibition among RGCs of the same type. We then experimentally determined that this effect is mediated by gap junctions with amacrine cells. Finally, we found that this negative feedback lowers RGC visual response gain without affecting feature selectivity. The principal neurons of the retina therefore participate in a recurrent circuit much as those in other brain areas, not being a mere collector of retinal signals, but are actively involved in visual computations.
    DOI:  https://doi.org/10.1371/journal.pone.0254611
  70. Front Physiol. 2021 ;12 696275
      Metabolic disorders are frequently associated with physiological changes that occur during ageing. The mitochondrial prohibitin complex (PHB) is an evolutionary conserved context-dependent modulator of longevity, which has been linked to alterations in lipid metabolism but which biochemical function remains elusive. In this work we aimed at elucidating the molecular mechanism by which depletion of mitochondrial PHB shortens the lifespan of wild type animals while it extends that of insulin signaling receptor (daf-2) mutants. A liquid chromatography coupled with mass spectrometry approach was used to characterize the worm lipidome of wild type and insulin deficient animals upon PHB depletion. Toward a mechanistic interpretation of the insights coming from this analysis, we used a combination of biochemical, microscopic, and lifespan analyses. We show that PHB depletion perturbed glycerophospholipids and glycerolipids pools differently in short- versus long-lived animals. Interestingly, PHB depletion in otherwise wild type animals induced the endoplasmic reticulum (ER) unfolded protein response (UPR), which was mitigated in daf-2 mutants. Moreover, depletion of DNJ-21, which functionally interacts with PHB in mitochondria, mimicked the effect of PHB deficiency on the UPRER and on the lifespan of wild type and insulin signaling deficient mutants. Our work shows that PHB differentially modulates lipid metabolism depending on the worm's metabolic status and provides evidences for a new link between PHB and ER homeostasis in ageing regulation.
    Keywords:  UPRER; ageing; insulin; lipid droplet; lipidomics; mitochondria; prohibitin (PHB); yolk
    DOI:  https://doi.org/10.3389/fphys.2021.696275
  71. Cell. 2021 Jul 14. pii: S0092-8674(21)00799-6. [Epub ahead of print]
      Retinal ganglion cells (RGCs) are the sole output neurons that transmit visual information from the retina to the brain. Diverse insults and pathological states cause degeneration of RGC somas and axons leading to irreversible vision loss. A fundamental question is whether manipulation of a key regulator of RGC survival can protect RGCs from diverse insults and pathological states, and ultimately preserve vision. Here, we report that CaMKII-CREB signaling is compromised after excitotoxic injury to RGC somas or optic nerve injury to RGC axons, and reactivation of this pathway robustly protects RGCs from both injuries. CaMKII activity also promotes RGC survival in the normal retina. Further, reactivation of CaMKII protects RGCs in two glaucoma models where RGCs degenerate from elevated intraocular pressure or genetic deficiency. Last, CaMKII reactivation protects long-distance RGC axon projections in vivo and preserves visual function, from the retina to the visual cortex, and visually guided behavior.
    Keywords:  CREB; CaMKII; RGC; RGC protection; excitotoxicity; glaucoma; optic nerve crush; vision preservation; visual function; visual pathway
    DOI:  https://doi.org/10.1016/j.cell.2021.06.031
  72. Methods Mol Biol. 2021 ;2320 101-110
      FluoVolt, a membrane potential dye, has been used to depict the action potentials of cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) in order to classify the cardiac cell subtype, evaluate long QT syndrome, and conduct cardiotoxic drug-responsive tests. To apply FluoVolt, users must prepare the hiPSC-CMs, assess the dye loadings, and apply the excitation light. Here we describe the steps to measure action potentials from single hiPSC-CMs and hiPSC-CM monolayers using this dye.
    Keywords:  Action potential; Cardiac cell subtype; Cardiac single cells; FluoVolt; Induced pluripotent stem cell; Membrane potential dye
    DOI:  https://doi.org/10.1007/978-1-0716-1484-6_11
  73. Front Genet. 2021 ;12 689892
      Mutations which affect splicing are significant contributors to rare disease, but are frequently overlooked by diagnostic sequencing pipelines. Greater ascertainment of pathogenic splicing variants will increase diagnostic yields, ending the diagnostic odyssey for patients and families affected by rare disorders, and improving treatment and care strategies. Advances in sequencing technologies, predictive modeling, and understanding of the mechanisms of splicing in recent years pave the way for improved detection and interpretation of splice affecting variants, yet several limitations still prohibit their routine ascertainment in diagnostic testing. This review explores some of these advances in the context of clinical application and discusses challenges to be overcome before these variants are comprehensively and routinely recognized in diagnostics.
    Keywords:  RNA; RNA-seq; diagnostics; rare disease; splicing
    DOI:  https://doi.org/10.3389/fgene.2021.689892
  74. Int J Mol Sci. 2021 Jul 16. pii: 7612. [Epub ahead of print]22(14):
      The genetic architecture of complex traits is multifactorial. Genome-wide association studies (GWASs) have identified risk loci for complex traits and diseases that are disproportionately located at the non-coding regions of the genome. On the other hand, we have just begun to understand the regulatory roles of the non-coding genome, making it challenging to precisely interpret the functions of non-coding variants associated with complex diseases. Additionally, the epigenome plays an active role in mediating cellular responses to fluctuations of sensory or environmental stimuli. However, it remains unclear how exactly non-coding elements associate with epigenetic modifications to regulate gene expression changes and mediate phenotypic outcomes. Therefore, finer interrogations of the human epigenomic landscape in associating with non-coding variants are warranted. Recently, chromatin-profiling techniques have vastly improved our understanding of the numerous functions mediated by the epigenome and DNA structure. Here, we review various chromatin-profiling techniques, such as assays of chromatin accessibility, nucleosome distribution, histone modifications, and chromatin topology, and discuss their applications in unraveling the brain epigenome and etiology of complex traits at tissue homogenate and single-cell resolution. These techniques have elucidated compositional and structural organizing principles of the chromatin environment. Taken together, we believe that high-resolution epigenomic and DNA structure profiling will be one of the best ways to elucidate how non-coding genetic variations impact complex diseases, ultimately allowing us to pinpoint cell-type targets with therapeutic potential.
    Keywords:  DNA structure; brain; chromatin loops; complex diseases; complex traits; epigenome; histone modifications; non-coding; open chromatin; transcription factors
    DOI:  https://doi.org/10.3390/ijms22147612