bims-mitdis Biomed News
on Mitochondrial disorders
Issue of 2021–05–09
forty-six papers selected by
Catalina Vasilescu, University of Helsinki



  1. Nat Protoc. 2021 May 05.
      Several essential components of the electron transport chain, the major producer of ATP in mammalian cells, are encoded in the mitochondrial genome. These 13 proteins are translated within mitochondria by 'mitoribosomes'. Defective mitochondrial translation underlies multiple inborn errors of metabolism and has been implicated in pathologies such as aging, metabolic syndrome and cancer. Here, we provide a detailed ribosome profiling protocol optimized to interrogate mitochondrial translation in mammalian cells (MitoRiboSeq), wherein mitoribosome footprints are generated with micrococcal nuclease and mitoribosomes are separated from cytosolic ribosomes and other RNAs by ultracentrifugation in a single straightforward step. We highlight critical steps during library preparation and provide a step-by-step guide to data analysis accompanied by open-source bioinformatic code. Our method outputs mitoribosome footprints at single-codon resolution. Codons with high footprint densities are sites of mitoribosome stalling. We recently applied this approach to demonstrate that defects in mitochondrial serine catabolism or in mitochondrial tRNA methylation cause stalling of mitoribosomes at specific codons. Our method can be applied to study basic mitochondrial biology or to characterize abnormalities in mitochondrial translation in patients with mitochondrial disorders.
    DOI:  https://doi.org/10.1038/s41596-021-00517-1
  2. Redox Biol. 2021 Apr 24. pii: S2213-2317(21)00136-1. [Epub ahead of print]43 101988
      Nicotinamide adenine dinucleotide (NAD) is a REDOX cofactor and metabolite essential for neuronal survival. Glaucoma is a common neurodegenerative disease in which neuronal levels of NAD decline. We assess the effects of nicotinamide (a precursor to NAD) on retinal ganglion cells (the affected neuron in glaucoma) in normal physiological conditions and across a range of glaucoma relevant insults including mitochondrial stress and axon degenerative insults. We demonstrate retinal ganglion cell somal, axonal, and dendritic neuroprotection by nicotinamide in rodent models which represent isolated ocular hypertensive, axon degenerative, and mitochondrial degenerative insults. We performed metabolomics enriched for small molecular weight metabolites for the retina, optic nerve, and superior colliculus which demonstrates that ocular hypertension induces widespread metabolic disruption, including consistent changes to α-ketoglutaric acid, creatine/creatinine, homocysteine, and glycerophosphocholine. This metabolic disruption is prevented by nicotinamide. Nicotinamide provides further neuroprotective effects by increasing oxidative phosphorylation, buffering and preventing metabolic stress, and increasing mitochondrial size and motility whilst simultaneously dampening action potential firing frequency. These data support continued determination of the utility of long-term nicotinamide treatment as a neuroprotective therapy for human glaucoma.
    Keywords:  Glaucoma; Metabolism; Metabolomics; Mitochondria; Nicotinamide; Retina; Retinal ganglion cell
    DOI:  https://doi.org/10.1016/j.redox.2021.101988
  3. Cell Rep. 2021 May 04. pii: S2211-1247(21)00420-4. [Epub ahead of print]35(5): 109087
      Parvalbumin (PV) is a cytosolic Ca2+-binding protein highly expressed in fast skeletal muscle, contributing to an increased relaxation rate. Moreover, PV is an "atrogene" downregulated in most muscle atrophy conditions. Here, we exploit mice lacking PV to explore the link between the two PV functions. Surprisingly, PV ablation partially counteracts muscle loss after denervation. Furthermore, acute PV downregulation is accompanied by hypertrophy and upregulation by atrophy. PV ablation has a minor impact on sarcoplasmic reticulum but is associated with increased mitochondrial Ca2+ uptake, mitochondrial size and number, and contacts with Ca2+ release sites. Mitochondrial calcium uniporter (MCU) silencing abolishes the hypertrophic effect of PV ablation, suggesting that mitochondrial Ca2+ uptake is required for hypertrophy. In turn, an increase of mitochondrial Ca2+ is required to enhance expression of the pro-hypertrophy gene PGC-1α4, whose silencing blocks hypertrophy due to PV ablation. These results reveal how PV links cytosolic Ca2+ control to mitochondrial adaptations, leading to muscle mass regulation.
    Keywords:  calcium buffer; mitochondria; skeletal muscle
    DOI:  https://doi.org/10.1016/j.celrep.2021.109087
  4. Mol Neurodegener. 2021 05 05. 16(1): 31
       BACKGROUND: Parkinson's disease (PD) is a complex, age-related neurodegenerative disorder of largely unknown etiology. PD is strongly associated with mitochondrial respiratory dysfunction, which can lead to epigenetic dysregulation and specifically altered histone acetylation. Nevertheless, and despite the emerging role of epigenetics in age-related brain disorders, the question of whether aberrant histone acetylation is involved in PD remains unresolved.
    METHODS: We studied fresh-frozen brain tissue from two independent cohorts of individuals with idiopathic PD (n = 28) and neurologically healthy controls (n = 21). We performed comprehensive immunoblotting to identify histone sites with altered acetylation levels in PD, followed by chromatin immunoprecipitation sequencing (ChIP-seq). RNA sequencing data from the same individuals was used to assess the impact of altered histone acetylation on gene expression.
    RESULTS: Immunoblotting analyses revealed increased acetylation at several histone sites in PD, with the most prominent change observed for H3K27, a marker of active promoters and enhancers. ChIP-seq analysis further indicated that H3K27 hyperacetylation in the PD brain is a genome-wide phenomenon with a strong predilection for genes implicated in the disease, including SNCA, PARK7, PRKN and MAPT. Integration of the ChIP-seq with transcriptomic data from the same individuals revealed that the correlation between promoter H3K27 acetylation and gene expression is attenuated in PD patients, suggesting that H3K27 acetylation may be decoupled from transcription in the PD brain. Strikingly, this decoupling was most pronounced among nuclear-encoded mitochondrial genes, corroborating the notion that impaired crosstalk between the nucleus and mitochondria is involved in the pathogenesis of PD. Our findings independently replicated in the two cohorts.
    CONCLUSIONS: Our findings strongly suggest that aberrant histone acetylation and altered transcriptional regulation are involved in the pathophysiology of PD. We demonstrate that PD-associated genes are particularly prone to epigenetic dysregulation and identify novel epigenetic signatures associated with the disease.
    Keywords:  ChIP-seq; Epigenetics; Gene expression; H3K27; Mitochondria; Neurodegeneration; Sirtuin
    DOI:  https://doi.org/10.1186/s13024-021-00450-7
  5. Nature. 2021 May 05.
      Mitochondrial fission is a highly regulated process that, when disrupted, can alter metabolism, proliferation and apoptosis1-3. Dysregulation has been linked to neurodegeneration3,4, cardiovascular disease3 and cancer5. Key components of the fission machinery include the endoplasmic reticulum6 and actin7, which initiate constriction before dynamin-related protein 1 (DRP1)8 binds to the outer mitochondrial membrane via adaptor proteins9-11, to drive scission12. In the mitochondrial life cycle, fission enables both biogenesis of new mitochondria and clearance of dysfunctional mitochondria through mitophagy1,13. Current models of fission regulation cannot explain how those dual fates are decided. However, uncovering fate determinants is challenging, as fission is unpredictable, and mitochondrial morphology is heterogeneous, with ultrastructural features that are below the diffraction limit. Here, we used live-cell structured illumination microscopy to capture mitochondrial dynamics. By analysing hundreds of fissions in African green monkey Cos-7 cells and mouse cardiomyocytes, we discovered two functionally and mechanistically distinct types of fission. Division at the periphery enables damaged material to be shed into smaller mitochondria destined for mitophagy, whereas division at the midzone leads to the proliferation of mitochondria. Both types are mediated by DRP1, but endoplasmic reticulum- and actin-mediated pre-constriction and the adaptor MFF govern only midzone fission. Peripheral fission is preceded by lysosomal contact and is regulated by the mitochondrial outer membrane protein FIS1. These distinct molecular mechanisms explain how cells independently regulate fission, leading to distinct mitochondrial fates.
    DOI:  https://doi.org/10.1038/s41586-021-03510-6
  6. Cell Metab. 2021 May 04. pii: S1550-4131(21)00179-0. [Epub ahead of print]33(5): 853-855
      Mitochondria cover several functions within the cell, including an influence on the transcription of nuclear genes. Recent work by Tigano et al. (2021) in Nature has identified a pathway of mitochondrial retrograde communication in which the nucleus senses aberrations in the mtDNA to drive the innate immune response.
    DOI:  https://doi.org/10.1016/j.cmet.2021.04.013
  7. Elife. 2021 May 04. pii: e66519. [Epub ahead of print]10
      Adrenergic stimulation of brown adipocytes alters mitochondrial dynamics, including the mitochondrial fusion protein optic atrophy 1 (OPA1). However, direct mechanisms linking OPA1 to brown adipose tissue (BAT) physiology are incompletely understood. We utilized a mouse model of selective OPA1 deletion in BAT (OPA1 BAT KO) to investigate the role of OPA1 in thermogenesis. OPA1 is required for cold-induced activation of thermogenic genes in BAT. Unexpectedly, OPA1 deficiency induced fibroblast growth factor 21 (FGF21) as a BATokine in an activating transcription factor 4 (ATF4)-dependent manner. BAT-derived FGF21 mediates an adaptive response, by inducing browning of white adipose tissue, increasing resting metabolic rates, and improving thermoregulation. However, mechanisms independent of FGF21, but dependent on ATF4 induction, promote resistance to diet-induced obesity in OPA1 BAT KO mice. These findings uncover a homeostatic mechanism of BAT-mediated metabolic protection governed in part by an ATF4-FGF21 axis, that is activated independently of BAT thermogenic function.
    Keywords:  biochemistry; chemical biology; mouse
    DOI:  https://doi.org/10.7554/eLife.66519
  8. Elife. 2021 May 04. pii: e66865. [Epub ahead of print]10
      Importing necessary metabolites into the mitochondrial matrix is a crucial step of fuel choice during stress adaptation. Branched chain-amino acids (BCAA) are essential amino acids needed for anabolic processes, but they are also imported into the mitochondria for catabolic reactions. What controls the distinct subcellular BCAA utilization during stress adaptation is insufficiently understood. The present study reports the role of SLC25A44, a recently identified mitochondrial BCAA carrier (MBC), in the regulation of mitochondrial BCAA catabolism and adaptive response to fever in rodents. We found that mitochondrial BCAA oxidation in brown adipose tissue (BAT) is significantly enhanced during fever in response to the pyrogenic mediator prostaglandin E2 (PGE2) and psychological stress in mice and rats. Genetic deletion of MBC in a BAT-specific manner blunts mitochondrial BCAA oxidation and non-shivering thermogenesis following intracerebroventricular PGE2 administration. At a cellular level, MBC is required for mitochondrial BCAA deamination as well as the synthesis of mitochondrial amino acids and TCA intermediates. Together, these results illuminate the role of MBC as a determinant of metabolic flexibility to mitochondrial BCAA catabolism and optimal febrile responses. This study also offers an opportunity to control fever by rewiring the subcellular BCAA fate.
    Keywords:  cell biology; mouse
    DOI:  https://doi.org/10.7554/eLife.66865
  9. Mol Metab. 2021 Apr 28. pii: S2212-8778(21)00084-3. [Epub ahead of print] 101239
       OBJECTIVE: Transport of Ca2+ into pancreatic β-cell mitochondria facilitates nutrient-mediated insulin secretion. The underlying mechanism, however, is unclear. Recent establishment of the molecular identity of the mitochondrial Ca2+ uniporter (MCU) and associated proteins allows modification of mitochondrial Ca2+ transport in intact cells. We examined the consequences of deficiency of the accessory protein, MICU2, in rat and human insulin-secreting cells and mouse islets.
    METHODS: siRNA-silencing of Micu2 in INS1-832/13 and EndoC-βH1 cell lines was performed; Micu2-/- mice were also studied. Insulin secretion and mechanistic analyses, utilizing live confocal imaging to assess mitochondrial function and intracellular Ca2+ dynamics, were performed.
    RESULTS: Silencing of Micu2 abrogated GSIS in INS1 832/13 and EndoC-βH1 cells. Micu2-/- mice also displayed attenuated GSIS. Mitochondrial Ca2+ uptake declined in MICU2-deficient INS1 832/13 and EndoC-βH1 cells in response to high glucose and high K+. Furthermore, MICU2 silencing in INS1 832/13 cells, presumably through its effects on mitochondrial Ca2+ uptake, perturbed mitochondrial function illustrated by absent mitochondrial membrane hyperpolarization and lowering of the ATP/ADP ratio in response to an elevation of glucose. Despite the loss of mitochondrial Ca2+ uptake, cytosolic Ca2+ was lower in siMICU2-treated INS1 832/13 cells in response to high K+. It was hypothesized that Ca2+ was accumulating in the submembrane compartment in MICU2-deficient cells, resulting in desensitization of voltage-dependent Ca2+ channels, thereby lowering total cytosolic Ca2+. Indeed, upon high K+ stimulation, MICU2-silenced cells showed higher and prolongated rises in submembrane Ca2+ levels.
    CONCLUSIONS: MICU2 plays a critical role in β-cell mitochondrial Ca2+ uptake. β-cell mitochondria sequester Ca2+ from the submembrane compartment preventing desensitization of voltage-dependent Ca2+ channels, thereby facilitating GSIS.
    Keywords:  bioenergetics; knock out mice; mitochondrial calcium uniporter; stimulus-secretion coupling; voltage-dependent calcium channels
    DOI:  https://doi.org/10.1016/j.molmet.2021.101239
  10. J Ophthalmol. 2021 ;2021 4581909
      The exact mechanism of retinal ganglion cell loss in the pathogenesis of glaucoma is yet to be understood. Mitochondrial damage-associated molecular patterns (DAMPs) resulting from mitochondrial dysfunction have been linked to Leber's hereditary optic neuropathy and autosomal dominant optic atrophy, as well as to brain neurodegenerative diseases. Recent evidence shows that, in conditions where mitochondria are damaged, a sustained inflammatory response and downstream pathological inflammation may ensue. Mitochondrial damage has been linked to the accumulation of age-related mitochondrial DNA mutations and mitochondrial dysfunction, possibly through aberrant reactive oxygen species production and defective mitophagy. The present review focuses on how mitochondrial dysfunction may overwhelm the ability of neurons and glial cells to adequately maintain homeostasis and how mitochondria-derived DAMPs trigger the immune system and induce neurodegeneration.
    DOI:  https://doi.org/10.1155/2021/4581909
  11. Nat Commun. 2021 05 05. 12(1): 2529
      In the past decade, many long noncoding RNAs (lncRNAs) have been identified and their in vitro functions defined, although in some cases their functions in vivo remain less clear. Moreover, unlike nuclear lncRNAs, the roles of cytoplasmic lncRNAs are less defined. Here, using a gene trapping approach in mouse embryonic stem cells, we identify Caren (short for cardiomyocyte-enriched noncoding transcript), a cytoplasmic lncRNA abundantly expressed in cardiomyocytes. Caren maintains cardiac function under pathological stress by inactivating the ataxia telangiectasia mutated (ATM)-DNA damage response (DDR) pathway and activating mitochondrial bioenergetics. The presence of Caren transcripts does not alter expression of nearby (cis) genes but rather decreases translation of an mRNA transcribed from a distant gene encoding histidine triad nucleotide-binding protein 1 (Hint1), which activates the ATM-DDR pathway and reduces mitochondrial respiratory capacity in cardiomyocytes. Therefore, the cytoplasmic lncRNA Caren functions in cardioprotection by regulating translation of a distant gene and maintaining cardiomyocyte homeostasis.
    DOI:  https://doi.org/10.1038/s41467-021-22735-7
  12. Antioxidants (Basel). 2021 Apr 30. pii: 711. [Epub ahead of print]10(5):
      Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance.
    Keywords:  brain insulin signaling; fatty acid metabolism; mitochondria; oxidative stress
    DOI:  https://doi.org/10.3390/antiox10050711
  13. Nucleic Acids Res. 2021 May 06. pii: gkab282. [Epub ahead of print]
      Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.
    DOI:  https://doi.org/10.1093/nar/gkab282
  14. Pharmacol Res Perspect. 2021 May;9(3): e00755
      Friedreich ataxia is an autosomal recessive, neurodegenerative disease characterized by the deficiency of the iron-sulfur cluster assembly protein frataxin. Loss of this protein impairs mitochondrial function. Mitochondria alter their morphology in response to various stresses; however, such alterations to morphology may be homeostatic or maladaptive depending upon the tissue and disease state. Numerous neurodegenerative diseases exhibit excessive mitochondrial fragmentation, and reversing this phenotype improves bioenergetics for diseases in which mitochondrial dysfunction is a secondary feature of the disease. This paper demonstrates that frataxin deficiency causes excessive mitochondrial fragmentation that is dependent upon Drp1 activity in Friedreich ataxia cellular models. Drp1 inhibition by the small peptide TAT-P110 reverses mitochondrial fragmentation but also decreases ATP levels in frataxin-knockdown fibroblasts and FRDA patient fibroblasts, suggesting that fragmentation may provide a homeostatic pathway for maintaining cellular ATP levels. The cardiolipin-stabilizing compound SS-31 similarly reverses fragmentation through a Drp1-dependent mechanism, but it does not affect ATP levels. The combination of TAT-P110 and SS-31 does not affect FRDA patient fibroblasts differently from SS-31 alone, suggesting that the two drugs act through the same pathway but differ in their ability to alter mitochondrial homeostasis. In approaching potential therapeutic strategies for FRDA, an important criterion for compounds that improve bioenergetics should be to do so without impairing the homeostatic response of mitochondrial fragmentation.
    Keywords:  ATP; Drp1; Drp1-dependent small peptides; Friedreich ataxia; frataxin; mitochondrial fragmentation; mitochondrial homeostasis
    DOI:  https://doi.org/10.1002/prp2.755
  15. Stem Cell Res Ther. 2021 May 06. 12(1): 269
       BACKGROUND: Sepsis is a systemic inflammatory response to a local severe infection that may lead to multiple organ failure and death. Previous studies have shown that 40-50% of patients with sepsis have diverse myocardial injuries and 70 to 90% mortality rates compared to 20% mortality in patients with sepsis without myocardial injury. Therefore, uncovering the mechanism of sepsis-induced myocardial injury and finding a target-based treatment are immensely important.
    OBJECTIVE: The present study elucidated the mechanism of sepsis-induced myocardial injury and examined the value of human umbilical cord mesenchymal stem cells (huMSCs) for protecting cardiac function in sepsis.
    METHODS: We used cecal ligation and puncture (CLP) to induce sepsis in mice and detect myocardial injury and cardiac function using serological markers and echocardiography. Cardiomyocyte apoptosis and heart tissue ultrastructure were detected using TdT-mediated dUTP Nick-End Labeling (TUNEL) and transmission electron microscopy (TEM), respectively. Fura-2 AM was used to monitor Ca2+ uptake and efflux in mitochondria. FQ-PCR and Western blotting detected expression of mitochondrial Ca2+ distribution regulators and PTEN-induced putative kinase 1 (PINK1). JC-1 was used to detect the mitochondrial membrane potential (Δψm) of cardiomyocytes.
    RESULTS: We found that expression of PINK1 decreased in mouse hearts during sepsis, which caused cardiomyocyte mitochondrial Ca2+ efflux disorder, mitochondrial calcium overload, and cardiomyocyte injury. In contrast, we found that exosomes isolated from huMSCs (huMSC-exo) carried Pink1 mRNA, which could be transferred to recipient cardiomyocytes to increase PINK1 expression. The reduction in cardiomyocyte mitochondrial calcium efflux was reversed, and cardiomyocytes recovered from injury. We confirmed the effect of the PINK1-PKA-NCLX axis on mitochondrial calcium homeostasis in cardiomyocytes during sepsis.
    CONCLUSION: The PINK1-PKA-NCLX axis plays an important role in mitochondrial calcium efflux in cardiomyocytes. Therefore, PINK1 may be a therapeutic target to protect cardiomyocyte mitochondria, and the application of huMSC-exo is a promising strategy against sepsis-induced heart dysfunction.
    Keywords:  Calcium overload; Cardiac dysfunction; Mitochondrial Ca2+ efflux; PINK1; Sepsis
    DOI:  https://doi.org/10.1186/s13287-021-02325-6
  16. Int J Mol Sci. 2021 Apr 30. pii: 4793. [Epub ahead of print]22(9):
      Mitochondria are the major source of intercellular bioenergy in the form of ATP. They are necessary for cell survival and play many essential roles such as maintaining calcium homeostasis, body temperature, regulation of metabolism and apoptosis. Mitochondrial dysfunction has been observed in variety of diseases such as cardiovascular disease, aging, type 2 diabetes, cancer and degenerative brain disease. In other words, the interpretation and regulation of mitochondrial signals has the potential to be applied as a treatment for various diseases caused by mitochondrial disorders. In recent years, mitochondrial transplantation has increasingly been a topic of interest as an innovative strategy for the treatment of mitochondrial diseases by augmentation and replacement of mitochondria. In this review, we focus on diseases that are associated with mitochondrial dysfunction and highlight studies related to the rescue of tissue-specific mitochondrial disorders. We firmly believe that mitochondrial transplantation is an optimistic therapeutic approach in finding a potentially valuable treatment for a variety of mitochondrial diseases.
    Keywords:  mitochondria; mitochondrial disease; mitochondrial dysfunction; mitochondrial function; mitochondrial transplantation
    DOI:  https://doi.org/10.3390/ijms22094793
  17. Mol Genet Genomic Med. 2021 May 07. e1692
    Undiagnosed Diseases Network
       BACKGROUND: Complex II is an essential component of the electron transport chain, linking it with the tricarboxylic acid cycle. Its four subunits are encoded in the nuclear genome, and deleterious variants in these genes, including SDHA (OMIM 600857), are associated with a wide range of symptoms including neurological disease, cardiomyopathy, and neoplasia (paraganglioma-pheochromocytomas (PGL/PCC), and gastrointestinal stromal tumors). Deleterious variants of SDHA are most frequently associated with Leigh and Leigh-like syndromes.
    METHODS AND RESULTS: Here, we describe a case of a 9-year-old boy with tremor, nystagmus, hypotonia, developmental delay, significant ataxia, and progressive cerebellar atrophy. He was found to have biallelic variants in SDHA, a known pathogenic variant (c.91C>T (p.R31*)), and a variant of unknown significance (c.454G>A (p.E152K)). Deficient activity of complexes II and III was detected in fibroblasts from the patient consistent with a diagnosis of a respiratory chain disorder.
    CONCLUSION: We, therefore, consider whether c.454G>A (p.E152K) is, indeed, a pathogenic variant, and what implications it has for family members who carry the same variant.
    Keywords:  SHDA; cerebellar atrophy; complex II; mitochondrial disease; novel mutation
    DOI:  https://doi.org/10.1002/mgg3.1692
  18. FASEB J. 2021 Jun;35(6): e21586
      Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Only 10% of all cases are familial form, the remaining 90% are sporadic form with unknown genetic background. The etiology of sporadic AD is still not fully understood. Pathogenesis and pathobiology of this disease are limited due to the limited number of experimental models. We used primary culture of fibroblasts derived from patients diagnosed with sporadic form of AD for investigation of dynamic properties of mitochondria, including fission-fusion process and localization of mitochondria within the cell. We observed differences in mitochondrial network organization with decreased mitochondrial transport velocity, and a drop in the frequency of fusion-fission events. These studies show how mitochondrial dynamics adapt to the conditions of long-term mitochondrial stress that prevails in cells of sporadic form of AD.
    Keywords:  Alzheimer’s disease; fibroblasts; mitochondrial dynamics
    DOI:  https://doi.org/10.1096/fj.202001978RR
  19. Front Mol Biosci. 2021 ;8 630332
      Heart failure is one of the leading causes of morbidity and mortality worldwide. In cardiomyocytes, mitochondria are not only essential organelles providing more than 90% of the ATP necessary for contraction, but they also play critical roles in regulating intracellular Ca2+ signaling, lipid metabolism, production of reactive oxygen species (ROS), and apoptosis. Because mitochondrial DNA only encodes 13 proteins, most mitochondrial proteins are nuclear DNA-encoded, synthesized, and transported from the cytoplasm, refolded in the matrix to function alone or as a part of a complex, and degraded if damaged or incorrectly folded. Mitochondria possess a set of endogenous chaperones and proteases to maintain mitochondrial protein homeostasis. Perturbation of mitochondrial protein homeostasis usually precedes disruption of the whole mitochondrial quality control system and is recognized as one of the hallmarks of cardiomyocyte dysfunction and death. In this review, we focus on mitochondrial chaperones and proteases and summarize recent advances in understanding how these proteins are involved in the initiation and progression of heart failure.
    Keywords:  cardiomyocyte; heart failure; mitochondrial chaperone; mitochondrial protease; mitochondrial protein degradation; mitochondrial protein folding; mitochondrial protein homeostasis
    DOI:  https://doi.org/10.3389/fmolb.2021.630332
  20. J Clin Invest. 2021 May 04. pii: 143078. [Epub ahead of print]
       BACKGROUND: Deciphering the function of the many genes previously classified as uncharacterized "open reading frame" (orf) completes our understanding of cell function and its pathophysiology.
    METHODS: Whole-exome sequencing, yeast 2-hybrid and transcriptome analyses together with molecular characterization are used here to uncover the function of the C2orf69 gene.
    RESULTS: We identified loss-of-function mutations in the uncharacterized C2orf69 gene in eight individuals with brain abnormalities involving hypomyelination and microcephaly, liver dysfunction and recurrent autoinflammation. C2orf69 contains an N-terminal signal peptide that is required and sufficient for mitochondrial localization. Consistent with mitochondrial dysfunction, patients showed signs of respiratory chain defect and a CRISPR-Cas9 knockout cell model of C2orf69 had similar respiratory chain defects. Patient-derived cells revealed alterations in immunological signaling pathways. Deposits of PAS-positive material in tissues from affected individuals together with decreased glycogen branching enzyme 1 (GBE1) activity indicated an additional impact of C2orf69 on glycogen metabolism.
    CONCLUSIONS: Our study identifies C2orf69 as an important regulator of human mitochondrial function and suggests an additional influence on other metabolic pathways.
    Keywords:  Genetic diseases; Genetics; Mitochondria; Neurological disorders
    DOI:  https://doi.org/10.1172/JCI143078
  21. Front Physiol. 2021 ;12 660498
      Vitamin D is an essential nutrient for the maintenance of skeletal muscle and bone health. The vitamin D receptor (VDR) is present in muscle, as is CYP27B1, the enzyme that hydroxylates 25(OH)D to its active form, 1,25(OH)D. Furthermore, mounting evidence suggests that vitamin D may play an important role during muscle damage and regeneration. Muscle damage is characterized by compromised muscle fiber architecture, disruption of contractile protein integrity, and mitochondrial dysfunction. Muscle regeneration is a complex process that involves restoration of mitochondrial function and activation of satellite cells (SC), the resident skeletal muscle stem cells. VDR expression is strongly upregulated following injury, particularly in central nuclei and SCs in animal models of muscle injury. Mechanistic studies provide some insight into the possible role of vitamin D activity in injured muscle. In vitro and in vivo rodent studies show that vitamin D mitigates reactive oxygen species (ROS) production, augments antioxidant capacity, and prevents oxidative stress, a common antagonist in muscle damage. Additionally, VDR knockdown results in decreased mitochondrial oxidative capacity and ATP production, suggesting that vitamin D is crucial for mitochondrial oxidative phosphorylation capacity; an important driver of muscle regeneration. Vitamin D regulation of mitochondrial health may also have implications for SC activity and self-renewal capacity, which could further affect muscle regeneration. However, the optimal timing, form and dose of vitamin D, as well as the mechanism by which vitamin D contributes to maintenance and restoration of muscle strength following injury, have not been determined. More research is needed to determine mechanistic action of 1,25(OH)D on mitochondria and SCs, as well as how this action manifests following muscle injury in vivo. Moreover, standardization in vitamin D sufficiency cut-points, time-course study of the efficacy of vitamin D administration, and comparison of multiple analogs of vitamin D are necessary to elucidate the potential of vitamin D as a significant contributor to muscle regeneration following injury. Here we will review the contribution of vitamin D to skeletal muscle regeneration following injury.
    Keywords:  25(OH)D; calcitriol; reactive oxygen species; satellite cells; skeletal muscle injury; skeletal muscle regeneration; vitamin D; vitamin D receptor
    DOI:  https://doi.org/10.3389/fphys.2021.660498
  22. Front Neurol. 2021 ;12 629414
      Neurodegeneration with Brain Iron Accumulation (NBIA) is a heterogeneous group of progressive neurodegenerative diseases characterized by iron deposition in the globus pallidus and the substantia nigra. As of today, 15 distinct monogenetic disease entities have been identified. The four most common forms are pantothenate kinase-associated neurodegeneration (PKAN), phospholipase A2 group VI (PLA2G6)-associated neurodegeneration (PLAN), beta-propeller protein-associated neurodegeneration (BPAN) and mitochondrial membrane protein-associated neurodegeneration (MPAN). Neurodegeneration with Brain Iron Accumulation disorders present with a wide spectrum of clinical symptoms such as movement disorder signs (dystonia, parkinsonism, chorea), pyramidal involvement (e.g., spasticity), speech disorders, cognitive decline, psychomotor retardation, and ocular abnormalities. Treatment remains largely symptomatic but new drugs are in the pipeline. In this review, we discuss the rationale of new compounds, summarize results from clinical trials, provide an overview of important results in cell lines and animal models and discuss the future development of disease-modifying therapies for NBIA disorders. A general mechanistic approach for treatment of NBIA disorders is with iron chelators which bind and remove iron. Few studies investigated the effect of deferiprone in PKAN, including a recent placebo-controlled double-blind multicenter trial, demonstrating radiological improvement with reduction of iron load in the basal ganglia and a trend to slowing of disease progression. Disease-modifying strategies address the specific metabolic pathways of the affected enzyme. Such tailor-made approaches include provision of an alternative substrate (e.g., fosmetpantotenate or 4'-phosphopantetheine for PKAN) in order to bypass the defective enzyme. A recent randomized controlled trial of fosmetpantotenate, however, did not show any significant benefit of the drug as compared to placebo, leading to early termination of the trials' extension phase. 4'-phosphopantetheine showed promising results in animal models and a clinical study in patients is currently underway. Another approach is the activation of other enzyme isoforms using small molecules (e.g., PZ-2891 in PKAN). There are also compounds which counteract downstream cellular effects. For example, deuterated polyunsaturated fatty acids (D-PUFA) may reduce mitochondrial lipid peroxidation in PLAN. In infantile neuroaxonal dystrophy (a subtype of PLAN), desipramine may be repurposed as it blocks ceramide accumulation. Gene replacement therapy is still in a preclinical stage.
    Keywords:  BPAN; MPAN; beta-propeller protein-associated neurodegeneration; disease-modification therapies; iron chelating agents; neurodegeneration with brain iron accumulation; pantothenate kinase-associated neurodegeneration; plan
    DOI:  https://doi.org/10.3389/fneur.2021.629414
  23. Cell Mol Life Sci. 2021 May 05.
      Genome-scale metabolic networks for model plants and crops in combination with approaches from the constraint-based modelling framework have been used to predict metabolic traits and design metabolic engineering strategies for their manipulation. With the advances in technologies to generate large-scale genotyping data from natural diversity panels and other populations, genome-wide association and genomic selection have emerged as statistical approaches to determine genetic variants associated with and predictive of traits. Here, we review recent advances in constraint-based approaches that integrate genetic variants in genome-scale metabolic models to characterize their effects on reaction fluxes. Since some of these approaches have been applied in organisms other than plants, we provide a critical assessment of their applicability particularly in crops. In addition, we further dissect the inferred effects of genetic variants with respect to reaction rate constants, abundances of enzymes, and concentrations of metabolites, as main determinants of reaction fluxes and relate them with their combined effects on complex traits, like growth. Through this systematic review, we also provide a roadmap for future research to increase the predictive power of statistical approaches by coupling them with mechanistic models of metabolism.
    Keywords:  Genome-wide association studies; Genomic selection; Metabolic models; Single-nucleotide polymorphisms
    DOI:  https://doi.org/10.1007/s00018-021-03844-4
  24. Genetics. 2020 Mar 01. 214(3): 561-576
      Copy-number variants (CNVs) represent a large part of natural genetic diversity and contribute significantly to trait variation. As a complement to sequence-based approaches, Falque et al. propose an original method to both detect and map... Single nucleotide polymorphisms (SNPs) are used widely for detecting quantitative trait loci, or for searching for causal variants of diseases. Nevertheless, structural variations such as copy-number variants (CNVs) represent a large part of natural genetic diversity, and contribute significantly to trait variation. Numerous methods and softwares based on different technologies (amplicons, CGH, tiling, or SNP arrays, or sequencing) have already been developed to detect CNVs, but they bypass a wealth of information such as genotyping data from segregating populations, produced, e.g., for QTL mapping. Here, we propose an original method to both detect and genetically map CNVs using mapping panels. Specifically, we exploit the apparent heterozygous state of duplicated loci: peaks in appropriately defined genome-wide allelic profiles provide highly specific signatures that identify the nature and position of the CNVs. Our original method and software can detect and map automatically up to 33 different predefined types of CNVs based on segregation data only. We validate this approach on simulated and experimental biparental mapping panels in two maize populations and one wheat population. Most of the events found correspond to having just one extra copy in one of the parental lines, but the corresponding allelic value can be that of either parent. We also find cases with two or more additional copies, especially in wheat, where these copies locate to homeologues. More generally, our computational tool can be used to give additional value, at no cost, to many datasets produced over the past decade from genetic mapping panels.
    Keywords:  Copy number variation (CNV); allele frequency profiles; non-Mendelian markers; segregating populations
    DOI:  https://doi.org/10.1534/genetics.119.302881
  25. Chem Commun (Camb). 2021 May 06.
      Mitochondrial voltage dynamics plays a crucial role in cell healthy and disease. Here, a new fluorescent probe to monitor mitochondrial early voltage variations is described. The slowly permeant probe is retained in mitochondria during measurements to avoid interferences from natural membrane potential by incorporating an hydrolizable ester function. Voltage, local polarity, pH parameters and transmembrane dynamics were found to be deeply correlated opening a approach in mitochondrial sensing.
    DOI:  https://doi.org/10.1039/d1cc01944a
  26. Cell Metab. 2021 May 04. pii: S1550-4131(21)00177-7. [Epub ahead of print]33(5): 857-872
      Although generally presumed to be isocaloric, dietary fats can differ in their energetic contributions and metabolic effects. Here, we show how an explicit consideration of the gut microbiome and its interactions with human physiology can enrich our understanding of dietary fat metabolism. We outline how variable human metabolic responses to different dietary fats, such as altered ileal digestibility or bile acid production, have downstream effects on the gut microbiome that differentially promote energy gain and inflammation. By incorporating host-microbial interactions into energetic models of human nutrition, we can achieve greater insight into the underlying mechanisms of diet-driven metabolic disease.
    DOI:  https://doi.org/10.1016/j.cmet.2021.04.011
  27. Ann Clin Transl Neurol. 2021 May 05.
       OBJECTIVE: The purpose of this study was to investigate correlations between brain proton magnetic resonance spectroscopy (1 H-MRS) findings with serum biomarkers and heteroplasmy of mitochondrial DNA (mtDNA) mutations. This study enrolled patients carrying mtDNA mutations associated with Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes (MELAS), and MELAS-Spectrum Syndrome (MSS).
    METHODS: Consecutive patients carrying mtDNA mutations associated with MELAS and MSS were recruited and their serum concentrations of lactate, alanine, and heteroplasmic mtDNA mutant load were evaluated. The brain protocol included single-voxel 1 H-MRS (1.5T) in the medial parieto-occipital cortex (MPOC), left cerebellar hemisphere, parieto-occipital white matter (POWM), and lateral ventricles. Relative metabolite concentrations of N-acetyl-aspartate (NAA), choline (Cho), and myo-inositol (mI) were estimated relative to creatine (Cr), using LCModel 6.3.
    RESULTS: Six patients with MELAS (age 28 ± 13 years, 3 [50%] female) and 17 with MSS (age 45 ± 11 years, 7 [41%] female) and 39 sex- and age-matched healthy controls (HC) were enrolled. These patients demonstrated a lower NAA/Cr ratio in MPOC compared to HC (p = 0.006), which inversely correlated with serum lactate (p = 0.021, rho = -0.68) and muscle mtDNA heteroplasmy (p < 0.001, rho = -0.80). Similarly, in the cerebellum patients had lower NAA/Cr (p < 0.001), Cho/Cr (p = 0.002), and NAA/mI (p = 0.001) ratios, which negatively correlated with mtDNA blood heteroplasmy (p = 0.001, rho = -0.81) and with alanine (p = 0.050, rho = -0.67). Ventricular lactate was present in 78.3% (18/23) of patients, correlating with serum lactate (p = 0.024, rho = 0.58).
    CONCLUSION: Correlations were found between the peripheral and biochemical markers of mitochondrial dysfunction and brain in vivo markers of neurodegeneration, supporting the use of both biomarkers as signatures of MELAS and MSS disease, to evaluate the efficacy of potential treatments.
    DOI:  https://doi.org/10.1002/acn3.51329
  28. Cell Discov. 2020 May 05. 6(1): 24
      The lysosomal degradation pathway of macroautophagy (herein referred to as autophagy) plays a crucial role in cellular physiology by regulating the removal of unwanted cargoes such as protein aggregates and damaged organelles. Over the last five decades, significant progress has been made in understanding the molecular mechanisms that regulate autophagy and its roles in human physiology and diseases. These advances, together with discoveries in human genetics linking autophagy-related gene mutations to specific diseases, provide a better understanding of the mechanisms by which autophagy-dependent pathways can be potentially targeted for treating human diseases. Here, we review mutations that have been identified in genes involved in autophagy and their associations with neurodegenerative diseases.
    DOI:  https://doi.org/10.1038/s41421-020-0158-y
  29. Front Pediatr. 2021 ;9 660076
      Mitochondriopathies represent a wide spectrum of miscellaneous disorders with multisystem involvement, which are caused by various genetic changes. The establishment of the diagnosis of mitochondriopathy is often challenging. Recently, several mutations of the VARS2 gene encoding the mitochondrial valyl-tRNA synthetase were associated with early onset encephalomyopathies or encephalocardiomyopathies with major clinical features such as hypotonia, developmental delay, brain MRI changes, epilepsy, hypertrophic cardiomyopathy, and plasma lactate elevation. However, the correlation between genotype and phenotype still remains unclear. In this paper we present a male Caucasian patient with a recurrent c.1168G>A (p.Ala390Thr) and a new missense biallelic variant c.2758T>C (p.Tyr920His) in the VARS2 gene which were detected by whole exome sequencing (WES). VARS2 protein was reduced in the patient's muscle. A resulting defect of oxidative phosphorylation (OXPHOS) was proven by enzymatic assay, western blotting and immunohistochemistry from a homogenate of skeletal muscle tissue. Clinical signs of our patient included hyperlactatemia, hypertrophic cardiomyopathy (HCM) and pulmonary hypertension, which led to early death at the age of 47 days without any other known accompanying signs. The finding of novel variants in the VARS2 gene expands the spectrum of known mutations and phenotype presentation. Based on our findings we recommend to consider possible mitochondriopathy and to include the analysis of the VARS2 gene in the genetic diagnostic algorithm in cases with early manifesting and rapidly progressing HCM with hyperlactatemia.
    Keywords:  VARS2 gene; hyperlactatemia; lethal hypertrophic cardiomyopathy; mitochondriopathy; oxidative phosphorylation; pulmonary hypertension
    DOI:  https://doi.org/10.3389/fped.2021.660076
  30. Exp Physiol. 2021 May 07.
       NEW FINDINGS: What is the central question of this study? Description and testing of a custom-designed multiplex gene expression assay to quantitate expression levels of a targeted group of mitochondrial genes in human skeletal muscle. What is the main finding and its importance? This study describes the development of a custom-designed GeXP multiplex assay and demonstrates the ability to accurately quantitate expression of a targeted set of mitochondrial genes in human skeletal muscle, while holding distinct methodological and practical advantages over other commonly used quantitation methods.
    ABSTRACT: Skeletal muscle is an important endocrine tissue demonstrating plasticity in response to external stimuli, including exercise and nutrition. Mitochondrial biogenesis is a common hallmark of adaptations to aerobic exercise training. Furthermore, altered expression of several genes implicated in the regulation of mitochondrial biogenesis, substrate oxidation and nicotinamide adenine dinucleotide (NAD+ ) biosynthesis following acute exercise underpins longer-term muscle metabolic adaptations. Gene expression is typically measured using real-time quantitative polymerase chain reaction (qPCR) platforms. However, interest has developed in the design of multiplex gene expression assays (GeXP) using the GenomeLab GeXP™ Genetic Analysis System, which can simultaneously quantitate gene expression of multiple targets, holding distinct advantages in terms of throughput, limiting technical error, cost effectiveness, and quantitating gene co-expression. This study describes the development of a custom-designed GeXP assay incorporating the measurement of proposed regulators of mitochondrial biogenesis, substrate oxidation, and NAD+ biosynthetic capacity in human skeletal muscle and characterises the resting gene expression (overnight fasted and non-exercised) signature within a group of young, healthy, recreationally active males. The design of GeXP-based assays provides the capacity to more accurately characterise the regulation of a targeted group of genes with specific regulatory functions, a potentially advantageous development for future investigations of the regulation of muscle metabolism by exercise and/or nutrition. This article is protected by copyright. All rights reserved.
    Keywords:  gene expression; mitochondria; skeletal muscle biopsy
    DOI:  https://doi.org/10.1113/EP089557
  31. World J Stem Cells. 2021 Apr 26. 13(4): 281-303
      Among inherited cardiac conditions, a special place is kept by cardiomyopathies (CMPs) and channelopathies (CNPs), which pose a substantial healthcare burden due to the complexity of the therapeutic management and cause early mortality. Like other inherited cardiac conditions, genetic CMPs and CNPs exhibit incomplete penetrance and variable expressivity even within carriers of the same pathogenic deoxyribonucleic acid variant, challenging our understanding of the underlying pathogenic mechanisms. Until recently, the lack of accurate physiological preclinical models hindered the investigation of fundamental cellular and molecular mechanisms. The advent of induced pluripotent stem cell (iPSC) technology, along with advances in gene editing, offered unprecedented opportunities to explore hereditary CMPs and CNPs. Hallmark features of iPSCs include the ability to differentiate into unlimited numbers of cells from any of the three germ layers, genetic identity with the subject from whom they were derived, and ease of gene editing, all of which were used to generate "disease-in-a-dish" models of monogenic cardiac conditions. Functionally, iPSC-derived cardiomyocytes that faithfully recapitulate the patient-specific phenotype, allowed the study of disease mechanisms in an individual-/allele-specific manner, as well as the customization of therapeutic regimen. This review provides a synopsis of the most important iPSC-based models of CMPs and CNPs and the potential use for modeling disease mechanisms, personalized therapy and deoxyribonucleic acid variant functional annotation.
    Keywords:  Cardiomyopathy; Channelopathy; Deoxyribonucleic acid variants; Genes; Induced pluripotent stem cells; Mutation
    DOI:  https://doi.org/10.4252/wjsc.v13.i4.281
  32. Nat Biomed Eng. 2021 May 03.
      DNA sequence variants with allele fractions below 1% are difficult to detect and quantify by sequencing owing to intrinsic errors in sequencing-by-synthesis methods. Although molecular-identifier barcodes can detect mutations with a variant-allele frequency (VAF) as low as 0.1% using next-generation sequencing (NGS), sequencing depths of over 25,000× are required, thus hampering the detection of mutations at high sensitivity in patient samples and in most samples used in research. Here we show that low-frequency DNA variants can be detected via low-depth multiplexed NGS after their amplification, by a median of 300-fold, using polymerase chain reaction and rationally designed 'blocker' oligonucleotides that bind to the variants. Using an 80-plex NGS panel and a sequencing depth of 250×, we detected single nucleotide polymorphisms with a VAF of 0.019% and contamination in human cell lines at a VAF as low as 0.07%. With a 16-plex NGS panel covering 145 mutations across 9 genes involved in melanoma, we detected low-VAF mutations (0.2-5%) in 7 out of the 19 samples of freshly frozen tumour biopsies, suggesting that tumour heterogeneity could be notably higher than previously recognized.
    DOI:  https://doi.org/10.1038/s41551-021-00713-0
  33. Cell Physiol Biochem. 2021 May 08. 55(3): 241-255
       BACKGROUND/AIMS: Rise in global incidence of obesity impacts metabolic health. Evidence from human and animal models show association of vitamin B12 (B12) deficiency with elevated BMI and lipids. Human adipocytes demonstrated dysregulation of lipogenesis by low B12 via hypomethylation and altered microRNAs. It is known de novo hepatic lipogenesis plays a key role towards dyslipidaemia, however, whether low B12 affects hepatic metabolism of lipids is not explored.
    METHODS: HepG2 was cultured in B12-deficient EMEM medium and seeded in different B12 media: 500nM(control), 1000pM(1nM), 100pM and 25pM(low) B12. Lipid droplets were examined by Oil Red O (ORO) staining using microscopy and then quantified by elution assay. Gene expression were assessed with real-time quantitative polymerase chain reaction (qRT-PCR) and intracellular triglycerides were quantified using commercial kit (Abcam, UK) and radiochemical assay. Fatty acid composition was measured by gas chromatography and mitochondrial function by seahorse XF24 flux assay.
    RESULTS: HepG2 cells in low B12 had more lipid droplets that were intensely stained with ORO compared with control. The total intracellular triglyceride and incorporation of radio-labelled-fatty acid in triglyceride synthesis were increased. Expression of genes regulating fatty acid, triglyceride and cholesterol biosynthesis were upregulated. Absolute concentrations of total fatty acids, saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), trans-fatty acids and individual even-chain and odd-chain fatty acids were significantly increased. Also, low B12 impaired fatty acid oxidation and mitochondrial functional integrity in HepG2 compared with control.
    CONCLUSION: Our data provide novel evidence that low B12 increases fatty acid synthesis and levels of individual fatty acids, and decreases fatty acid oxidation and mitochondrial respiration, thus resulting in dysregulation of lipid metabolism in HepG2. This highlights the potential significance of de novo lipogenesis and warrants possible epigenetic mechanisms of low B12.
    Keywords:  Vitamin B12; Lipogenesis; Fatty acid oxidation; Dyslipidaemia; Hepatocyte; Triglyceride
    DOI:  https://doi.org/10.33594/000000368
  34. Cell Rep. 2021 May 04. pii: S2211-1247(21)00418-6. [Epub ahead of print]35(5): 109085
      We conducted PrediXcan analysis of hydrocephalus risk in ten neurological tissues and whole blood. Decreased expression of MAEL in the brain was significantly associated (Bonferroni-adjusted p < 0.05) with hydrocephalus. PrediXcan analysis of brain imaging and genomics data in the independent UK Biobank (N = 8,428) revealed that MAEL expression in the frontal cortex is associated with white matter and total brain volumes. Among the top differentially expressed genes in brain, we observed a significant enrichment for gene-level associations with these structural phenotypes, suggesting an effect on disease risk through regulation of brain structure and integrity. We found additional support for these genes through analysis of the choroid plexus transcriptome of a murine model of hydrocephalus. Finally, differential protein expression analysis in patient cerebrospinal fluid recapitulated disease-associated expression changes in neurological tissues, but not in whole blood. Our findings provide convergent evidence highlighting the importance of tissue-specific pathways and mechanisms in the pathophysiology of hydrocephalus.
    Keywords:  BioVU; GWAS; PrediXcan; TWAS; UK Biobank; electronic health records; human genetics; hydrocephalus; neurodevelopmental disorders; proteomics; transcriptomics
    DOI:  https://doi.org/10.1016/j.celrep.2021.109085
  35. Curr Opin Neurobiol. 2021 May 03. pii: S0959-4388(21)00040-4. [Epub ahead of print]69 170-177
      A tripartite synapse comprises a neuronal presynaptic axon and a postsynaptic dendrite, which are closely ensheathed by a perisynaptic astrocyte process. Through their structural and functional association with thousands of neuronal synapses, astrocytes regulate synapse formation and function. Recent work revealed a diverse range of cell adhesion-based mechanisms that mediate astrocyte-synapse interactions at tripartite synapses. Here, we will review some of these findings unveiling a highly dynamic bidirectional signaling between astrocytes and synapses, which orchestrates astrocyte morphological maturation and synapse development. Moreover, we will discuss the roles of these newly discovered molecular pathways in brain physiology and function both in health and disease.
    DOI:  https://doi.org/10.1016/j.conb.2021.03.015
  36. Curr Neurol Neurosci Rep. 2021 May 05. 21(7): 30
       PURPOSE OF REVIEW: We aim to summarize the sleep disorders reported in patients affected by primary mitochondrial dysfunctions and describe the association with their clinical and molecular characteristics.
    RECENT FINDINGS: Sleep complaints are prevalent in mitochondrial disorders. Sleep-disordered breathing is the main sleep disorder reported in mitochondrial diseases. OSA and CSA are, respectively, more frequently associated with patients characterized by the prevalent involvement of the skeletal muscle and the predominant involvement of the central nervous system. Other sleep disorders, such as restless legs syndrome, have been rarely described. Sleep disorders are frequently associated with primary mitochondrial disorders, and the clinical phenotypes affect the type of sleep disturbance associated with the mitochondrial dysfunction. A polysomnographic study should be performed in every subject with this neurogenetic disorder both at diagnosis and during follow-up for the numerous adverse clinical outcomes associated with sleep disorders and the frailty of mitochondrial patients.
    Keywords:  Mitochondria; Mitochondrial disease; Obstructive sleep apnea; Sleep; Sleep disorders; Sleep-disordered breathing
    DOI:  https://doi.org/10.1007/s11910-021-01121-2
  37. Methods Mol Biol. 2021 May 07.
      The use of patient-derived induced pluripotent stem cells (iPSCs) and their neural derivatives is becoming increasingly important in the study of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Lewy body dementia, amyotrophic lateral sclerosis, peripheral neuropathy, and so on. Increasingly, iPSC-derived neurons also reveal key pathways and signaling defects in psychiatric disorders such as autism spectrum disorders, schizophrenia, and bipolar disorder. With recent advances in CRISPR/Cas9-mediated genome editing technology, patient-derived iPSCs with disease-causing mutations can be corrected into "isogenic control lines," and these can be differentiated into neural derivatives with identical genetic background. This provides an opportunity for in vitro disease modeling to unravel disease mechanisms and a platform to facilitate drug discovery. In this chapter, we provide details of the differentiation protocols to reliably derive four currently relevant neuronal subtypes, i.e., cortical neurons, midbrain dopaminergic neurons, spinal motor neurons, and sensory neurons.
    Keywords:  2D differentiation; Cortical neuron differentiation; Dopaminergic neuron differentiation; Human-induced pluripotent stem cells; Motor neuron differentiation; Sensory neuron differentiation
    DOI:  https://doi.org/10.1007/7651_2021_399
  38. Elife. 2021 May 04. pii: e64480. [Epub ahead of print]10
      Erythropoietin (EPO) drives erythropoiesis and is secreted mainly by the kidney upon hypoxic or anemic stress. The paucity of EPO production in renal EPO-producing cells (REPs) causes renal anemia, one of the most common complications of chronic nephropathies. Although mitochondrial dysfunction is commonly observed in several renal and hematopoietic disorders, the mechanism by which mitochondrial quality control impacts renal anemia remains elusive. In this study, we showed that FUNDC1, a mitophagy receptor, plays a critical role in EPO-driven erythropoiesis induced by stresses. Mechanistically, EPO production is impaired in REPs in Fundc1-/- mice upon stresses, and the impairment is caused by the accumulation of damaged mitochondria, which consequently leads to the elevation of the reactive oxygen species (ROS) level and triggers inflammatory responses by up-regulating proinflammatory cytokines. These inflammatory factors promote the myofibroblastic transformation of REPs, resulting in the reduction of EPO production. We therefore provide a link between aberrant mitophagy and deficient EPO generation in renal anemia. Our results also suggest that the mitochondrial quality control safeguards REPs under stresses, which may serve as a potential therapeutic strategy for the treatment of renal anemia.
    Keywords:  cell biology; mouse
    DOI:  https://doi.org/10.7554/eLife.64480
  39. Mol Cell. 2021 May 06. pii: S1097-2765(21)00310-5. [Epub ahead of print]81(9): 1863-1865
      Using mitochondria-targeted TALENS and ionizing radiation, consequences of mtDNA double-strand (ds) breaks were investigated by Tigano et al. (2021) who uncovered mtRNA as a retrograde second messenger of this form of mtDNA stress that activates the RIG-I/MAVS innate immune signaling pathway.
    DOI:  https://doi.org/10.1016/j.molcel.2021.04.005
  40. EMBO Rep. 2021 May 05. e52122
      Metabolic regulation is critical for the maintenance of pluripotency and the survival of embryonic stem cells (ESCs). The transcription factor Tfcp2l1 has emerged as a key factor for the naïve pluripotency of ESCs. Here, we report an unexpected role of Tfcp2l1 in metabolic regulation in ESCs-promoting the survival of ESCs through regulating fatty acid oxidation (FAO) under metabolic stress. Tfcp2l1 directly activates many metabolic genes in ESCs. Deletion of Tfcp2l1 leads to an FAO defect associated with upregulation of glucose uptake, the TCA cycle, and glutamine catabolism. Mechanistically, Tfcp2l1 activates FAO by inducing Cpt1a, a rate-limiting enzyme transporting free fatty acids into the mitochondria. ESCs with defective FAO are sensitive to cell death induced by glycolysis inhibition and glutamine deprivation. Moreover, the Tfcp2l1-Cpt1a-FAO axis promotes the survival of quiescent ESCs and diapause-like blastocysts induced by mTOR inhibition. Thus, our results reveal how ESCs orchestrate pluripotent and metabolic programs to ensure their survival in response to metabolic stress.
    Keywords:  Tfcp2l1; diapause; embryonic stem cell; fatty acid oxidation; metabolism
    DOI:  https://doi.org/10.15252/embr.202052122
  41. Semin Cell Dev Biol. 2021 May 02. pii: S1084-9521(21)00092-6. [Epub ahead of print]
      Cardiomyocyte (CM) maturation is the transformation of differentiated fetal CMs into adult CMs that involves changes in morphology, cell function and metabolism, and the transcriptome. This process is, however, incomplete and ultimately arrested in pluripotent stem cell-derived CMs (PSC-CMs) in culture, which hinders their broad biomedical application. For this reason, enormous efforts are currently being made with the goal of generating mature PSC-CMs. In this review, we summarize key aspects of maturation observed in native CMs and discuss recent findings on the factors and mechanisms that regulate the process. Particular emphasis is put on transcriptional regulation and single-cell RNA-sequencing analysis that has emerged as a key tool to study time-series gene regulation and to determine the maturation state. We then discuss different biomimetic strategies to enhance PSC-CM maturation and discuss their effects at the single cell transcriptomic and functional levels.
    Keywords:  Cardiomyocyte maturation; Heart development; Maturation metrics; Pluripotent stem cells; Single-cell transcriptomics; Tissue engineering
    DOI:  https://doi.org/10.1016/j.semcdb.2021.04.019
  42. Autophagy. 2021 May 04. 1-3
      Mitochondrial dysfunction is behind several neurodegenerative diseases, including Alzheimer disease (AD). Accumulation of damaged mitochondria is already observed at the early stages of AD and has been linked to impaired mitophagy, but the mechanisms underlying this alteration are still not fully known. In our recent study, we show that intracellular cholesterol enrichment can downregulate amyloid beta (Aβ)-induced mitophagy. Mitochondrial glutathione depletion resulting from high cholesterol levels promotes PINK1 (PTEN induced kinase 1)-mediated mitophagosome formation; however, mitophagy flux is ultimately disrupted, most likely due to fusion deficiency of endosomes-lysosomes caused by cholesterol. Meanwhile, in APP-PSEN1-SREBF2 mice, an AD mouse model that overexpresses the cholesterol-related transcription factor SREBF2, cholesterol accumulation prompts an oxidative- and age-dependent cytosolic aggregation of the mitophagy adaptor OPTN (optineurin), which prevents mitophagosome formation despite enhanced PINK1-PRKN/parkin signaling. Hippocampal neurons from postmortem brain of AD individuals reproduce the progressive accumulation of OPTN in aggresome-like structures accompanied by high levels of mitochondrial cholesterol in advanced stages of the disease. Overall, these data provide new insights into the impairment of the PINK1-PRKN mitophagy pathway in AD and suggest the combination of mitophagy inducers with strategies focused on restoring the cholesterol homeostasis and mitochondrial redox balance as a potential disease-modifying therapy for AD.
    Keywords:  Alzheimer disease; Mitophagy; PINK1; aggresomes; autophagy; cholesterol; optineurin; parkin
    DOI:  https://doi.org/10.1080/15548627.2021.1920814
  43. Nat Methods. 2021 May;18(5): 507-519
      RNA-binding proteins (RBPs) are critical regulators of gene expression and RNA processing that are required for gene function. Yet the dynamics of RBP regulation in single cells is unknown. To address this gap in understanding, we developed STAMP (Surveying Targets by APOBEC-Mediated Profiling), which efficiently detects RBP-RNA interactions. STAMP does not rely on ultraviolet cross-linking or immunoprecipitation and, when coupled with single-cell capture, can identify RBP-specific and cell-type-specific RNA-protein interactions for multiple RBPs and cell types in single, pooled experiments. Pairing STAMP with long-read sequencing yields RBP target sites in an isoform-specific manner. Finally, Ribo-STAMP leverages small ribosomal subunits to measure transcriptome-wide ribosome association in single cells. STAMP enables the study of RBP-RNA interactomes and translational landscapes with unprecedented cellular resolution.
    DOI:  https://doi.org/10.1038/s41592-021-01128-0
  44. Cell Metab. 2021 May 04. pii: S1550-4131(21)00174-1. [Epub ahead of print]33(5): 847-848
      Health benefits of aerobic exercise are indisputable and are closely related to the maintenance of mitochondrial energy homeostasis and insulin sensitivity. Flockhart et al. (2021) demonstrate, however, that a high volume of high-intensity aerobic exercise adversely affects mitochondrial function and may cause impaired glucose tolerance.
    DOI:  https://doi.org/10.1016/j.cmet.2021.04.008