Curr Issues Mol Biol. 2025 Nov 17. pii: 955. [Epub ahead of print]47(11):
Cardiovascular diseases (CVDs) remain a leading cause of mortality worldwide. According to the WHO, every year, there is an increase in the rate of death globally due to CVDs, stroke, and myocardial infarction. Several risk factors contribute to the development of CVDs, one of which is hypoxia, defined as a reduction in oxygen levels. This major stressor affects aerobic species and plays a crucial role in the development of cardiovascular disease. Research has uncovered the "hypoxia-inducible factors (HIFs) switch" and investigated the onset, progression, acute and chronic effects, and adaptations of hypoxia, particularly at high altitudes. The hypoxia signalling pathways are closely linked to natural rhythms such as the circadian rhythm and hibernation. In addition to genetic and evolutionary factors, epigenetics also plays an important role in postnatal cardiovascular responses to hypoxia. Oxidized LDL-C initiates atherosclerosis amidst oxidative stress, inflammation, endothelial dysfunction, and vascular remodelling in CVD pathogenesis. Anti-inflammatory and antioxidant biomarkers are needed to identify individuals at risk of cardiovascular events and enhance risk prediction. Among these, C-reactive protein (CRP) is a recognized marker of vascular inflammation in coronary arteries. Elevated pro-atherogenic oxidized LDL (oxLDL) expression serves as an antioxidant marker, predicting coronary heart disease in apparently healthy men. Natural antioxidants and anti-inflammatory molecules protect the heart by reducing oxidative stress, enhancing vasodilation, and improving endothelial function. For instance, the flavonoid quercetin exerts antioxidant and anti-inflammatory effects primarily by activating the Nrf2/HO-1 signaling pathway, thereby enhancing cellular antioxidant defense and reducing reactive oxygen species. Carotenoids, such as astaxanthin, exhibit potent antioxidant activity by scavenging free radicals and preserving mitochondrial integrity. The alkaloid berberine mediates cardiovascular benefits through activation of AMO-activated protein kinase (AMPK) and inhibition of nuclear factor kappa B [NF-kB] signalling, improving lipid metabolism and suppressing inflammatory cytokines. Emerging evidence highlights microRNAs (miRNAs) as potential regulators of oxidative stress via endothelial nitric oxide synthase (eNOS) and silent mating-type information regulation 2 homolog (SIRT1). While the exact mechanisms remain unclear, their benefits are likely to include antioxidant and anti-inflammatory effects, notably reducing the susceptibility of low-density lipoproteins to oxidation. Additionally, the interactions between organs under hypoxia signalling underscore the need for a comprehensive regulatory framework that can support the identification of therapeutic targets, advance clinical research, and enhance treatments, including FDA-approved drugs and those in clinical trials. Promising natural products, including polysaccharides, alkaloids, saponins, flavonoids, and peptides, as well as traditional Indian medicines, have demonstrated anti-hypoxic properties. Their mechanisms of action include increasing haemoglobin, glycogen, and ATP levels, reducing oxidative stress and lipid peroxidation, preserving mitochondrial function, and regulating genes related to apoptosis. These findings emphasise the importance of anti-hypoxia research for the development of effective therapies to combat this critical health problem. A recent approach to controlling CVDs involves the use of antioxidant and anti-inflammatory therapeutics through low-dose dietary supplementation. Despite their effectiveness at low doses, further research on ROS, antioxidants, and nutrition, supported by large multicentre trials, is needed to optimize this strategy.
Keywords: anti-inflammatory; antioxidant; cardiovascular diseases