bims-misrem Biomed News
on Mitochondria and sarcoplasmic reticulum in muscle mass
Issue of 2021–10–24
four papers selected by
Rafael Antonio Casuso Pérez, University of Granada



  1. Front Physiol. 2021 ;12 732308
      Unc51 like autophagy activating kinase 1 (Ulk1), the primary autophagy regulator, has been linked to metabolic adaptation in skeletal muscle to exercise training. Here we compared the roles of Ulk1 and homologous Ulk2 in skeletal muscle insulin action following exercise training to gain more mechanistic insights. Inducible, skeletal muscle-specific Ulk1 knock-out (Ulk1-iMKO) mice and global Ulk2 knock-out (Ulk2-/-) mice were subjected to voluntary wheel running for 6 weeks followed by assessment of exercise capacity, glucose tolerance, and insulin signaling in skeletal muscle after a bolus injection of insulin. Both Ulk1-iMKO and Ulk2-/- mice had improved endurance exercise capacity post-exercise. Ulk1-iMKO did not improve glucose clearance during glucose tolerance test, while Ulk2-/- had only marginal improvement. However, exercise training-induced improvement of insulin action in skeletal muscle, indicated by Akt-S473 phosphorylation, was only impaired in Ulk1-iMKO. These data suggest that Ulk1, but not Ulk2, is required for exercise training-induced improvement of insulin action in skeletal muscle, implicating crosstalk between catabolic and anabolic signaling as integral to metabolic adaptation to energetic stress.
    Keywords:  Unc51 like autophagy activating kinase; autophagy; exercise; insulin signaling; skeletal muscle
    DOI:  https://doi.org/10.3389/fphys.2021.732308
  2. FASEB J. 2021 Nov;35(11): e21988
      Interval training (IT) results in improved fatigue resistance in skeletal muscle mainly due to an increased aerobic capacity, which involves increased muscle mitochondrial content and/or improved mitochondrial function. We hypothesized that IT with high-intensity contractions is more effective in increasing mitochondrial function, and hence fatigue resistance, than low-intensity contractions. To study this hypothesis without interference from differences in muscle fiber recruitment obliged to occur during voluntary contractions, IT was performed with in situ supramaximal electrical stimulation where all muscle fibers are recruited. We compared the effect of IT with repeated low-intensity (20 Hz stimulation, IT20) and high-intensity (100 Hz stimulation, IT100) contractions on fatigue resistance and mitochondrial content and function in mouse plantar flexor muscles. Muscles were stimulated every other day for 4 weeks. The averaged peak torque during IT bouts was 4.2-fold higher with IT100 than with IT20. Both stimulation protocols markedly improved in situ fatigue resistance, although the improvement was larger with IT100. The citrate synthase activity, a biomarker of mitochondrial content, was similarly increased with IT20 and IT100. Conversely, increased expression of mitochondrial respiratory chain (MRC) complexes I, III, and IV was only observed with IT100 and this was accompanied by increases in MRC supercomplex formation and pyruvate-malate-driven state 3 respiration in isolated mitochondria. In conclusion, the IT-induced increase in fatigue resistance is larger with high-intensity than with low-intensity contractions and this is linked to improved mitochondrial function due to increased expression of MRC complexes and assembly of MRC supercomplexes.
    Keywords:  contraction intensity; fatigue resistance; interval training; mitochondria; skeletal muscle; supercomplex
    DOI:  https://doi.org/10.1096/fj.202101204R
  3. Free Radic Biol Med. 2021 Oct 13. pii: S0891-5849(21)00751-6. [Epub ahead of print]
      Reactive oxygen species (ROS) are recognized as important signaling molecules in healthy skeletal muscle. Redox sensitive proteins can respond to intracellular changes in ROS by oxidation of reactive thiol groups on cysteine (Cys) residues. Exercise is known to induce the generation of superoxide and nitric oxide, resulting in the activation of several adaptive signaling pathways; however, it has been suggested that aging attenuates these redox-regulated adaptations to acute exercise. In the present study, we used redox proteomics to study the vastus lateralis muscles of Adult (n = 6 male, 6 female; 18-30 yrs) and Old (n = 6 male, 6 female; 64-79 yrs) adults. Participants completed a bout of high intensity cycling exercise consisting of five sets of 2-minute intervals performed at 80% maximal aerobic power output (PPO), with 2 minutes recovery cycling at 40% PPO between sets. Muscle biopsies were collected prior to exercise, and immediately following the first, second, and fifth high intensity interval. Global proteomic analysis indicated differences in abundance of a number of individual proteins between skeletal muscles of Adult and Old subjects at rest with a significant exacerbation of these differences induced by the acute exercise. In particular, we observed an exercise-induced decrease in abundance of mitochondrial proteins in muscles from older subjects only. Redox proteome analysis revealed cysteines from five cytosolic proteins in older subjects with lower oxidation (i.e. greater reduction) than was seen in muscle from the young adults at rest. Redox homeostasis was well maintained in Adult subjects following exercise, but there was significant increase in oxidation of multiple mitochondrial and cytosolic protein cysteines in Old subjects. We also observed that oxidation of peroxiredoxin 3 occurred following exercise in both Adult and Old groups, supporting the possibility that this is a key effector protein for mitochondrial redox signaling. Thus, we show, for the first time that exercise reveals a lack of resilience in muscle of older human participants, that is apparent as a loss of mitochondrial proteins and oxidation of multiple protein cysteines that are not seen in younger subjects. The precise consequences of this redox disruption are unclear, but this likely play a role in the attenuation of multiple adaptations to exercise that are classically seen with aging. Such changes were only seen following the acute stress of exercise., highlighting the need to consider not only basal differences seen during aging but also the difference following physiological challenge.
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2021.10.003