bims-misrem Biomed News
on Mitochondria and sarcoplasmic reticulum in muscle mass
Issue of 2021–05–23
four papers selected by
Rafael Antonio Casuso Pérez, University of Granada



  1. J Cell Sci. 2020 Jan 01. pii: jcs.237917. [Epub ahead of print]
      Heme is a cofactor and signaling molecule that is essential for much of aerobic life. All heme-dependent processes in eukaryotes require that heme is trafficked from its site of synthesis in the mitochondria to hemoproteins located throughout the cell. However, the mechanisms governing the mobilization of heme out of the mitochondria, and the spatio-temporal dynamics of these processes, are poorly understood. Herein, using genetically encoded fluorescent heme sensors, we developed a live cell assay to monitor heme distribution dynamics between the mitochondrial inner-membrane, where heme is synthesized, and the mitochondrial matrix, cytosol, and nucleus. Surprisingly, heme trafficking to the nucleus is ∼25% faster than to the cytosol or mitochondrial matrix, which are nearly identical, potentially supporting a role for heme as a mitochondrial-nuclear retrograde signal. Moreover, we discovered that the heme synthetic enzyme, 5-aminolevulinic acid synthase (ALAS), and GTPases in control of the mitochondrial dynamics machinery, Mgm1 and Dnm1, and ER contact sites, Gem1, regulate the flow of heme between the mitochondria and nucleus. Overall, our results indicate that there are parallel pathways for the distribution of bioavailable heme.
    Keywords:  Heme; Heme transport; Mitochondrial dynamics; Yeast
    DOI:  https://doi.org/10.1242/jcs.237917
  2. J Cell Sci. 2020 Jan 01. pii: jcs.240374. [Epub ahead of print]
      The mitochondrial inner membrane contains a unique phospholipid known as cardiolipin (CL), which stabilises the protein complexes embedded in the membrane and supports its overall structure. Recent evidence indicates that the mitochondrial ribosome may associate with the inner membrane to facilitate co-translational insertion of the hydrophobic oxidative phosphorylation (OXPHOS) proteins into the inner membrane. We generated three mutant knockout cell lines for the cardiolipin biosynthesis gene Crls1 to investigate the effects of cardiolipin loss on mitochondrial protein synthesis. Reduced CL levels caused altered mitochondrial morphology and transcriptome-wide changes that were accompanied by reduced uncoordinated mitochondrial translation rates and impaired respiratory supercomplex formation. Aberrant protein synthesis was caused by impaired formation and distribution of mitochondrial ribosomes. Reduction or loss of cardiolipin resulted in divergent mitochondrial and endoplasmic reticulum stress responses. We show that cardiolipin is required to stabilise the interaction of the mitochondrial ribosome with the membrane via its association with OXA1 during active translation. This interaction facilitates insertion of newly synthesised mitochondrial proteins into the inner membrane and stabilises the respiratory supercomplexes.
    Keywords:  Mitochondrial membranes; Mitochondrial ribosomes; Protein synthesis
    DOI:  https://doi.org/10.1242/jcs.240374
  3. J Appl Physiol (1985). 2021 May 20.
      Human skeletal muscle characteristics such as fiber type composition, fiber size and myonuclear content are widely studied in clinical and sports related contexts. Being aware of the methodological and biological variability of the characteristics is a critical aspect in study design and outcome interpretation, but comprehensive data on the variability of morphological features in human skeletal muscle is currently limited. Accordingly, in the present study, m. vastus lateralis biopsies (10 per subject) from young and healthy individuals, collected in a systematic manner, were analyzed for various characteristics using immunohistochemistry (n=7) and SDS-PAGE (n=25). None of the analyzed parameters; fiber type % (FT%), type I and II CSA (fCSA), percentage fiber type area (fCSA%), myosin heavy chain composition (MyHC%), type IIX content, myonuclear content or myonuclear domain varied in a systematic manner longitudinally along the muscle or between the two legs. The average within subject coefficient of variation for FT%, fCSA, fCSA%, and MyHC% ranged between 13-18%, but was only 5% for fiber specific myonuclear content, which reduced the variability for myonuclear domain size to 11-12%. Pure type IIX fibers and type IIX MyHC were randomly distributed and present in <24% of the analyzed samples, with the average content being 0.1 and 1.1%, respectively. In conclusion, leg or longitudinal orientation does not seem to be an important aspect to consider when investigating human vastus lateralis characteristics. However, single muscle biopsies should preferably not be used when studying fiber type and fiber size related aspects given the notable sample to sample variability.
    Keywords:  Fiber type; cross-sectional area; immunohistochemistry; myonuclei; myosin heavy chain
    DOI:  https://doi.org/10.1152/japplphysiol.00053.2021
  4. J Cell Sci. 2020 Jan 01. pii: jcs.241539. [Epub ahead of print]
      One major cause of endoplasmic reticulum (ER) stress is homeostatic imbalance between biosynthetic protein folding and protein folding capacity. Cells utilize mechanisms such as the unfolded protein response (UPR) to cope with ER stress. Nevertheless, when ER stress is prolonged or severe, cell death may occur, accompanied by production of mitochondrial reactive oxygen species (ROS). Using a yeast model, we describe an innate, adaptive response to ER stress to increase select mitochondrial proteins, O2 consumption, and cell survival. The mitochondrial response allows cells to resist additional ER stress. ER stress-induced mitochondrial response is mediated by activation of retrograde (RTG) signaling to enhance anapleurotic reactions of the TCA cycle. Mitochondrial response to ER stress is accompanied by inactivation of the conserved TORC1 pathway, and activation of Snf1/AMPK, the conserved energy sensor and regulator of metabolism. Our results provide new insight into the role of respiration in cell survival in the face of ER stress, and should help in developing therapeutic strategies to limit cell death in disorders linked to ER stress.
    Keywords:  ER stress; Endoplasmic reticulum; Mitochondria; Yeast
    DOI:  https://doi.org/10.1242/jcs.241539