bims-misrem Biomed News
on Mitochondria and sarcoplasmic reticulum in muscle mass
Issue of 2021–03–07
eight papers selected by
Rafael Antonio Casuso Pérez, University of Granada



  1. Aging Cell. 2021 Mar 06. e13322
      The causes of the decline in skeletal muscle mass and function with age, known as sarcopenia, are poorly understood. Nutrition (calorie restriction) interventions impact many cellular processes and increase lifespan and preserve muscle mass and function with age. As we previously observed an increase in life span and muscle function in aging mice on a ketogenic diet (KD), we aimed to investigate the effect of a KD on the maintenance of skeletal muscle mass with age and the potential molecular mechanisms of this action. Twelve-month-old mice were assigned to an isocaloric control or KD until 16 or 26 months of age, at which time skeletal muscle was collected for evaluating mass, morphology, and biochemical properties. Skeletal muscle mass was significantly greater at 26 months in the gastrocnemius of mice on the KD. This result in KD mice was associated with a shift in fiber type from type IIb to IIa fibers and a range of molecular parameters including increased markers of NMJ remodeling, mitochondrial biogenesis, oxidative metabolism, and antioxidant capacity, while decreasing endoplasmic reticulum (ER) stress, protein synthesis, and proteasome activity. Overall, this study shows the effectiveness of a long-term KD in mitigating sarcopenia. The diet preferentially preserved oxidative muscle fibers and improved mitochondrial and antioxidant capacity. These adaptations may result in a healthier cellular environment, decreasing oxidative and ER stress resulting in less protein turnover. These shifts allow mice to better maintain muscle mass and function with age.
    Keywords:  aging; ketogenic diet; mice; sarcopenia; skeletal muscle
    DOI:  https://doi.org/10.1111/acel.13322
  2. Physiol Rep. 2021 Mar;9(5): e14789
      Mechanistic/mammalian target of rapamycin (mTOR) is a central factor of protein synthesis signaling and plays an important role in the resistance training-induced increase in skeletal muscle mass and subsequent skeletal muscle hypertrophy response. In particular, mTOR complex 1 (mTORC1) promotes protein synthesis in ribosomes by activating the downstream effectors, p70S6K and 4EBP1, in skeletal muscle and is highly sensitive to rapamycin, an mTOR inhibitor. Recently, resistance training has also been shown to affect mitochondrial dynamics, which is coupled with mitochondrial function. In skeletal muscle, mitochondria dynamically change their morphology through repeated fusion and fission, which may be key for controlling the quality of skeletal muscle. However, how the mechanisms of mitochondrial dynamics function during hypertrophy in skeletal muscle remains unclear. The aim of this study was to examine the impact of mTOR inhibition on mitochondrial dynamics during skeletal muscle hypertrophy. Consistent with previous studies, functional overload by synergist (gastrocnemius and soleus) ablation-induced progressive hypertrophy (increase in protein synthesis and fiber cross-sectional area) of the plantaris muscle was observed in mice. Moreover, these hypertrophic responses were significantly inhibited by rapamycin administration. Fourteen days of functional overload increased levels of MFN2 and OPA1, which regulate mitochondrial fusion, whereas this enhancement was inhibited by rapamycin administration. Additionally, overload decreased the levels of DRP1, which regulates mitochondrial fission and oxidative phosphorylation, regardless of rapamycin administration. These observations suggest that the relative reduction in mitochondrial function or content is complemented by enhancement of mitochondrial fusion and that this complementary response may be regulated by mTORC1.
    Keywords:  mTOR signaling; mitochondrial dynamics; skeletal muscle hypertrophy
    DOI:  https://doi.org/10.14814/phy2.14789
  3. Int J Mol Sci. 2021 Feb 16. pii: 1937. [Epub ahead of print]22(4):
      The accumulation of damaged mitochondria due to insufficient autophagy has been implicated in the pathophysiology of skeletal muscle aging. Ulk1 is an autophagy-related kinase that initiates autophagosome assembly and may also play a role in autophagosome degradation (i.e., autophagy flux), but the contribution of Ulk1 to healthy muscle aging is unclear. Therefore, the purpose of this study was to investigate the role of Ulk1-mediated autophagy in skeletal muscle aging. At age 22 months (80% survival rate), muscle contractile and metabolic function were assessed using electrophysiology in muscle-specific Ulk1 knockout mice (MKO) and their littermate controls (LM). Specific peak-isometric torque of the ankle dorsiflexors (normalized by tibialis anterior muscle cross-sectional area) and specific force of the fast-twitch extensor digitorum longus muscles was reduced in MKO mice compared to LM mice (p < 0.03). Permeabilized muscle fibers from MKO mice had greater mitochondrial content, yet lower mitochondrial oxygen consumption and greater reactive oxygen species production compared to fibers from LM mice (p ≤ 0.04). Alterations in neuromuscular junction innervation patterns as well as changes to autophagosome assembly and flux were explored as possible contributors to the pathological features in Ulk1 deficiency. Of primary interest, we found that Ulk1 phosphorylation (activation) to total Ulk1 protein content was reduced in older muscles compared to young muscles from both human and mouse, which may contribute to decreased autophagy flux and an accumulation of dysfunctional mitochondria. Results from this study support the role of Ulk1-mediated autophagy in aging skeletal muscle, reflecting Ulk1's dual role in maintaining mitochondrial integrity through autophagosome assembly and degradation.
    Keywords:  aging; autophagy flux; mitophagy; neuromuscular junction; sarcopenia
    DOI:  https://doi.org/10.3390/ijms22041937
  4. J Cachexia Sarcopenia Muscle. 2021 Mar 05.
       BACKGROUND: Muscle atrophy is a common pathology associated with disuse, such as prolonged bed rest or spaceflight, and is associated with detrimental health outcomes. There is emerging evidence that disuse atrophy may differentially affect males and females. Cellular mechanisms contributing to the development and progression of disuse remain elusive, particularly protein turnover cascades. The purpose of this study was to investigate the initial development and progression of disuse muscle atrophy in male and female mice using the well-established model of hindlimb unloading (HU).
    METHODS: One hundred C57BL/6J mice (50 male and 50 female) were hindlimb suspended for 0 (control), 24, 48, 72, or 168 h to induce disuse atrophy (10 animals per group). At designated time points, animals were euthanized, and tissues (extensor digitorum longus, gastrocnemius, and soleus for mRNA analysis, gastrocnemius and extensor digitorum longus for protein synthesis rates, and tibialis anterior for histology) were collected for analysis of protein turnover mechanisms (protein anabolism and catabolism).
    RESULTS: Both males and females lost ~30% of tibialis anterior cross-sectional area after 168 h of disuse. Males had no statistical difference in MHCIIB fibre area, whereas unloaded females had ~33% lower MHCIIB cross-sectional area by 168 h of unloading. Both males and females had lower fractional protein synthesis rates (FSRs) within 24-48 h of HU, and females appeared to have a greater reduction compared with males within 24 h of HU (~23% lower FSRs in males vs. 40% lower FSRs in females). Males and females exhibited differential patterns and responses in multiple markers of protein anabolism, catabolism, and myogenic capacity during the development and progression of disuse atrophy. Specifically, females had greater mRNA inductions of catabolic factors Ubc and Gadd45a (~4-fold greater content in females compared with ~2-fold greater content in males) and greater inductions of anabolic inhibitors Redd1 and Deptor with disuse across multiple muscle tissues exhibiting different fibre phenotypes.
    CONCLUSIONS: These results suggest that the aetiology of disuse muscle atrophy is more complicated and nuanced than previously thought, with different responses based on muscle phenotypes and between males and females, with females having greater inductions of atrophic markers early in the development of disuse atrophy.
    Keywords:  Females; Males; Muscle loss; Protein anabolism; Protein catabolism; Sex differences
    DOI:  https://doi.org/10.1002/jcsm.12693
  5. Cell Stem Cell. 2021 Mar 04. pii: S1934-5909(21)00061-8. [Epub ahead of print]28(3): 394-408
      Recent evidence supports the notion that mitochondrial metabolism is necessary for the determination of stem cell fate. Historically, mitochondrial metabolism is linked to the production of ATP and tricarboxylic acid (TCA) cycle metabolites to support stem cell survival and growth, respectively. However, it is now clear that beyond these canonical roles, mitochondria as signaling organelles dictate stem cell fate and function. In this review, we focus on key conceptual ideas on how mitochondria control mammalian stem cell fate and function through reactive oxygen species (ROS) generation, TCA cycle metabolite production, NAD+/NADH ratio regulation, pyruvate metabolism, and mitochondrial dynamics.
    Keywords:  L-2-HG; ROS; TCA cycle; acetyl-CoA; epigenetics; mitochondrial dynamics; pyruvate
    DOI:  https://doi.org/10.1016/j.stem.2021.02.011
  6. iScience. 2021 Feb 19. 24(2): 102119
      Remodeling of mitochondrial ultrastructure is a process that is critical for organelle physiology and apoptosis. Although the key players in this process-mitochondrial contact site and cristae junction organizing system (MICOS) and Optic Atrophy 1 (OPA1)-have been characterized, the mechanisms behind its regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for the maintenance of intermembrane connectivity through dynamic association with MICOS. This association is independent of OPA1, mediated via the MICOS subunit MIC60, and is important for stability of MICOS and the intermembrane contacts. The OMA1-MICOS relay is required for optimal bioenergetic output and apoptosis. Loss of OMA1 affects these activities; remarkably it can be alleviated by MICOS-emulating intermembrane bridge. Thus, OMA1-dependent ultrastructure support is required for mitochondrial architecture and bioenergetics under basal and stress conditions, suggesting a previously unrecognized role for OMA1 in mitochondrial physiology.
    Keywords:  Cell Biology; Molecular Biology; Organizational Aspects of Cell Biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102119
  7. EMBO Rep. 2021 Mar 03. e51606
      Reduction of mitochondrial membrane potential (Δψm ) is a hallmark of mitochondrial dysfunction. It activates adaptive responses in organisms from yeast to human to rewire metabolism, remove depolarized mitochondria, and degrade unimported precursor proteins. It remains unclear how cells maintain Δψm , which is critical for maintaining iron-sulfur cluster (ISC) synthesis, an indispensable function of mitochondria. Here, we show that yeast oxidative phosphorylation mutants deficient in complex III, IV, V, and mtDNA, respectively, exhibit activated stress responses and progressive reduction of Δψm . Extensive omics analyses of these mutants show that these mutants progressively activate adaptive responses, including transcriptional downregulation of ATP synthase inhibitor Inh1 and OXPHOS subunits, Puf3-mediated upregulation of import receptor Mia40 and global mitochondrial biogenesis, Snf1/AMPK-mediated upregulation of glycolysis and repression of ribosome biogenesis, and transcriptional upregulation of cytoplasmic chaperones. These adaptations disinhibit mitochondrial ATP hydrolysis, remodel mitochondrial proteome, and optimize ATP supply to mitochondria to convergently maintain Δψm , ISC biosynthesis, and cell proliferation.
    Keywords:  mitochondrial membrane potential; mitochondrial stress responses; oxidative phosphorylation
    DOI:  https://doi.org/10.15252/embr.202051606
  8. Cell Rep. 2021 Mar 02. pii: S2211-1247(21)00110-8. [Epub ahead of print]34(9): 108796
      Mechanical signals, such as those evoked by maximal-intensity contractions (MICs), can induce an increase in muscle mass. Rapamycin-sensitive signaling events are widely implicated in the regulation of this process; however, recent studies indicate that rapamycin-insensitive signaling events are also involved. Thus, to identify these events, we generate a map of the MIC-regulated and rapamycin-sensitive phosphoproteome. In total, we quantify more than 10,000 unique phosphorylation sites and find that more than 2,000 of these sites are significantly affected by MICs, but remarkably, only 38 of the MIC-regulated events are mediated through a rapamycin-sensitive mechanism. Further interrogation of the rapamycin-insensitive phosphorylation events identifies the S473 residue on Tripartite Motif-Containing 28 (TRIM28) as one of the most robust MIC-regulated phosphorylation sites, and extensive follow-up studies suggest that TRIM28 significantly contributes to the homeostatic regulation of muscle size and function as well as the hypertrophy that occurs in response to increased mechanical loading.
    Keywords:  atrophy; contraction; exercise; growth; hypertrophy; mTOR; mechanical loading; phosphorylation; rapamycin; signal transduction
    DOI:  https://doi.org/10.1016/j.celrep.2021.108796