bims-misrem Biomed News
on Mitochondria and sarcoplasmic reticulum in muscle mass
Issue of 2020‒07‒05
five papers selected by
Rafael Antonio Casuso Pérez
University of Granada


  1. Sci Signal. 2020 Jun 30. pii: eaax6660. [Epub ahead of print]13(638):
      Chaperones in the endoplasmic reticulum (ER) control the flux of Ca2+ ions into mitochondria, thereby increasing or decreasing the energetic output of the oxidative phosphorylation pathway. An example is the abundant ER lectin calnexin, which interacts with sarco/endoplasmic reticulum Ca2+ ATPase (SERCA). We found that calnexin stimulated the ATPase activity of SERCA by maintaining its redox state. This function enabled calnexin to control how much ER Ca2+ was available for mitochondria, a key determinant for mitochondrial bioenergetics. Calnexin-deficient cells compensated for the loss of this function by partially shifting energy generation to the glycolytic pathway. These cells also showed closer apposition between the ER and mitochondria. Calnexin therefore controls the cellular energy balance between oxidative phosphorylation and glycolysis.
    DOI:  https://doi.org/10.1126/scisignal.aax6660
  2. Nutrients. 2020 Jun 29. pii: E1930. [Epub ahead of print]12(7):
      β-hydroxybutyrate is the main ketone body generated by the liver under starvation. Under these conditions, it can sustain ATP levels by its oxidation in mitochondria. As mitochondria can modify its shape and function under different nutritional challenges, we study the chronic effects of β-hydroxybutyrate supplementation on mitochondrial morphology and function, and its relation to exercise capacity. Male C57BL/6 mice were supplemented with β-hydroxybutyrate mineral salt (3.2%) or control (CT, NaCl/KCl) for six weeks and submitted to a weekly exercise performance test. We found an increase in distance, maximal speed, and time to exhaustion at two weeks of supplementation. Fatty acid metabolism and OXPHOS subunit proteins declined at two weeks in soleus but not in tibialis anterior muscles. Oxygen consumption rate on permeabilized fibers indicated a decrease in the presence of pyruvate in the short-term treatment. Both the tibialis anterior and soleus showed decreased levels of Mitofusin 2, while electron microscopy assessment revealed a significant reduction in mitochondrial cristae shape in the tibialis anterior, while a reduction in the mitochondrial number was observed only in soleus. These results suggest that short, but not long-term, β‑hydroxybutyrate supplementation increases exercise capacity, associated with modifications in mitochondrial morphology and function in mouse skeletal muscle.
    Keywords:  endurance; ketone bodies; mitochondrial morphology; skeletal muscle; β-hydroxybutyrate
    DOI:  https://doi.org/10.3390/nu12071930
  3. Oxid Med Cell Longev. 2020 ;2020 5304768
      Circadian clocks regulate metabolic processes in a tissue-specific manner, which deteriorates during aging. Skeletal muscle is the largest metabolic organ in our body, and our previous studies highlight a key role of circadian regulation of skeletal muscle mitochondria in healthy aging. However, a possible circadian regulation of cardiolipin (CL), the signature lipid class in the mitochondrial inner membrane, remains largely unclear. Here, we show that CL levels oscillate during the diurnal cycle in C2C12 myotubes. Disruption of the Ror genes, encoding the ROR nuclear receptors in the secondary loop of the circadian oscillator, in C2C12 cells was found to dampen core circadian gene expression. Importantly, several genes involved in CL synthesis, including Taz and Ptpmt1, displayed rhythmic expression which was disrupted or diminished in Ror-deficient C2C12 cells. In vivo studies using skeletal muscle tissues collected from young and aged mice showed diverse effects of the clock and aging on the oscillatory expression of CL genes, and CL levels in skeletal muscle were enhanced in aged mice relative to young mice. Finally, consistent with a regulatory role of RORs, Nobiletin, a natural agonist of RORs, was found to partially restore transcripts levels of CL synthesis genes in aged muscle under a dietary challenge condition. Together, these observations highlight a rhythmic CL synthesis in skeletal muscle that is dependent on RORs and modifiable by age and diet.
    DOI:  https://doi.org/10.1155/2020/5304768
  4. DNA Cell Biol. 2020 Jun 26.
      Mitochondria contain their own genome, mitochondrial DNA (mtDNA), essential to support their fundamental intracellular role in ATP production and other key metabolic and homeostatic pathways. Mitochondria are highly dynamic organelles that communicate with all the other cellular compartments, through sites of high physical proximity. Among all, their crosstalk with the endoplasmic reticulum (ER) appears particularly important as its derangement is tightly implicated with several human disorders. Population-specific mtDNA variants clustered in defining the haplogroups have been shown to exacerbate or mitigate these pathological conditions. The exact mechanisms of the mtDNA background-modifying effect are not completely clear and a possible explanation is the outcome of mitochondrial efficiency on retrograde signaling to the nucleus. However, the possibility that different haplogroups shape the proximity and crosstalk between mitochondria and the ER has never been proposed neither investigated. In this study, we pose and discuss this question and provide preliminary data to answer it. Besides, we also address the possibility that single, disease-causing mtDNA point mutations may act also by reshaping organelle communication. Overall, this perspective review provides a theoretical platform for future studies on the interaction between mtDNA variants and organelle contact sites.
    Keywords:  LHON disease; haplogroup; mitochondria/ER contacts; mtDNA
    DOI:  https://doi.org/10.1089/dna.2020.5614
  5. FASEB J. 2020 Jul 01.
      Dietary restriction and reduced reproduction have been linked to long lifespans in the vast majority of species tested. Although decreased mitochondrial mass and/or function are hallmarks of aging, little is known about the mechanisms by which these organelles contribute to physiological aging or to the effects of lifespan-extending interventions, particularly with respect to oxidative phosphorylation and energy production. Here, we employed the nematode Caenorhabditis elegans to examine the effects of inhibition of germline proliferation and dietary restriction, both of which extend the lifespan of C. elegans, on mitochondrial respiratory activity in whole animals and isolated organelles. We found that oxygen consumption rates and mitochondrial mass were reduced in wild-type (WT) C. elegans subjected to bacterial deprivation (BD) compared with animals fed ad libitum (AL). In contrast, BD decreased the rate of oxygen uptake but not mitochondrial mass in germline-less glp-1(e2144ts) mutants. Interestingly, mitochondria isolated from animals subjected to BD and/or inhibition of germline proliferation showed no differences in complex I-mediated respiratory activity compared to control mitochondria, whereas both interventions enhanced the efficiency with which mitochondria utilized lipids as respiratory substrates. Notably, the combination of BD and inhibition of germline proliferation further increased mitochondrial lipid oxidation compared to either intervention alone. We also detected a striking correlation between lifespan extension in response to BD and/or inhibition of germline proliferation and the capacity of C. elegans to generate ATP from lipids. Our results thus suggest that the ability to oxidize lipids may be determinant in enhanced longevity.
    Keywords:   C. elegans ; dietary restriction; lipid oxidation; longevity; mitochondrial metabolism
    DOI:  https://doi.org/10.1096/fj.201901880R