medRxiv. 2025 Oct 17. pii: 2025.10.15.25338094. [Epub ahead of print]
Human biofluids contain cell-free mitochondrial DNA (cf-mtDNA) and extracellular mitochondria (ex-Mito), creating the challenge of defining their origins, destinations, mechanisms of regulation, and purposes. To expand our understanding of cf-mtDNA biology, we present a descriptive electron microscopy analysis of circulating particles from cf-mtDNA-enriched plasma (citrate, heparin, and EDTA), serum (red and gold top), and saliva collected from ten healthy people (5 females, 5 males, mean age 44.9 years). Ex-mito and extracellular vesicles (EVs) were isolated by centrifugation followed by size-exclusion chromatography, imaged by transmission electron microscopy, and morphometrically analyzed. In parallel, cf-mtDNA was quantified in each biofluid. The resulting catalog of the most common circulating particles in plasma, serum, and saliva show that circulating double-membrane extracellular particles- consistent with mitochondrial ultrastructure-are present across human biofluids, along with EVs and other particle types. Combining imaging with cf-mtDNA quantification, we show that individuals with higher plasma cf-mtDNA concentrations tend to contain more double-membrane, ex-Mito-like particles. These preliminary results challenge the notion that, under normal conditions, the majority of cf-mtDNA exists as naked and potentially pro-inflammatory forms. Instead, these results are consistent with the concept of mitochondria transfer or signaling between cells and tissues. The image inventory provided here expands our knowledge of cell-free mitochondrial biology and provides a resource to inform biofluid selection and technical considerations in future studies quantifying ex-Mito and cf-mtDNA.