bims-mireme Biomed News
on Mitochondria in regenerative medicine
Issue of 2021–06–20
nine papers selected by
Brian Spurlock, The University of North Carolina at Chapel Hill



  1. FASEB J. 2021 Jul;35(7): e21709
      Tissues undergo a process of degeneration as the body ages. Mesenchymal stem cells (MSCs) have been found to have major potential in delaying the aging process in tissues and organs. However, the mechanism underlying the anti-aging effects of MSC is not clear which limits clinical applications. In this study, we used adipose-derived mesenchymal stem cells (ADSCs) to perform anti-aging treatments on senescent cells and progeroid animal models. Following intervention with ADSCs, replicative senescence was delayed and metabolic homeostasis was transformed from catabolism to anabolism. Metabolomic tests were used to analyze different metabolites. We found that ADSCs acted to accelerate mitophagy which eliminated intracellular ROS and improved the quality of mitochondria. These processes acted to regulate the cellular metabolic homeostasis and ultimately delayed the process of aging. Allogeneic stem cell therapy in a Progeria animal model (DNA polymerase gamma (POLG) knockin, mitochondrial dysfunction) also showed that ADSC therapy can improve alopecia and kyphosis by promoting mitophagy. Our research confirms for the first time that allogeneic stem cell therapy can improve aging-related symbols and phenotypes through mitochondrial quality control. These results are highly significant for the future applications of stem cells in aging-related diseases.
    Keywords:  adipose-derived mesenchymal stem cells; aging; metabolism; mitophagy; stem cell transplantation
    DOI:  https://doi.org/10.1096/fj.202100332R
  2. Front Cell Dev Biol. 2021 ;9 667252
      Induced pluripotent stem cells derived cells (iPSCs) not only can be used for personalized cell transfer therapy, but also can be used for modeling diseases for drug screening and discovery in vitro. Although prior studies have characterized the function of rodent iPSCs derived endothelial cells (ECs) in diabetes or metabolic syndrome, feature phenotypes are largely unknown in hiPSC-ECs from patients with diabetes. Here, we used hiPSC lines from patients with type 2 diabetes mellitus (T2DM) and differentiated them into ECs (dia-hiPSC-ECs). We found that dia-hiPSC-ECs had disrupted glycine homeostasis, increased senescence, and impaired mitochondrial function and angiogenic potential as compared with healthy hiPSC-ECs. These signature phenotypes will be helpful to establish dia-hiPSC-ECs as models of endothelial dysfunction for understanding molecular mechanisms of disease and for identifying and testing new targets for the treatment of endothelial dysfunction in diabetes.
    Keywords:  endothelial function; endothelium; glycine; mitochondrial function; senescence
    DOI:  https://doi.org/10.3389/fcell.2021.667252
  3. Biol Reprod. 2021 Jun 16. pii: ioab118. [Epub ahead of print]
      Metabolites control epigenetic mechanisms and, conversly, cell metabolism is regulated at the epigenetic level in response to changes in the cellular environnement. In recent years, this metabolo-epigenetic control of gene expression has been implicated in the regulation of multiple stages of embryonic development. The developmental potency of stem cells and their embryonic counterparts is directly determined by metabolic rewiring. Here, we review the current knowledge on the interplay between epigenetics and metabolism in the specific context of early germ cells development. We further develop the implications of metabolic rewiring in primordial germ cells in light of their epigenetic remodelling during cell fate determination. Finally, we discuss the relevance of concerted metabolic and epigenetic regulation of primordial germ cells in the context of mammalian transgenerational epigenetic inheritance.
    Keywords:  Epigenetics; Metabolism; Primordial Germ Cells; alpha-ketoglutarate
    DOI:  https://doi.org/10.1093/biolre/ioab118
  4. Leukemia. 2021 Jun 17.
      Cord blood (CB) represents a source of hematopoietic stem and progenitor cells (CB-HSPCs) for bone marrow (BM) reconstitution, but clinical CB application is limited in adult patients due to the insufficient number of CB-HSCPCs and the lack of effective ex vivo approaches to increase CB-HSPC functionality. Since human-induced pluripotent stem cells (hiPSCs) have been indicated as donor cells for bioactive extracellular vesicles (EVs) modulating properties of other cells, we are the first to employ hiPSC-derived EVs (hiPSC-EVs) to enhance the hematopoietic potential of CB-derived CD45dimLin-CD34+ cell fraction enriched in CB-HSPCs. We demonstrated that hiPSC-EVs improved functional properties of CB-HSPCs critical for their hematopoietic capacity including metabolic, hematopoietic and clonogenic potential as well as survival, chemotactic response to stromal cell-derived factor 1 and adhesion to the model components of hematopoietic niche in vitro. Moreover, hiPSC-EVs enhanced homing and engraftment of CB-HSPCs in vivo. This phenomenon might be related to activation of signaling pathways in CB-HSPCs following hiPSC-EV treatment, as shown on both gene expression and the protein kinases activity levels. In conclusion, hiPSC-EVs might be used as ex vivo modulators of CB-HSPCs capacity to enhance their functional properties and augment future practical applications of CB-derived cells in BM reconstitution.
    DOI:  https://doi.org/10.1038/s41375-021-01325-y
  5. Nat Commun. 2021 06 16. 12(1): 3673
      Mitochondrial ribosomes (mitoribosomes) synthesize a critical set of proteins essential for oxidative phosphorylation. Therefore, mitoribosomal function is vital to the cellular energy supply. Mitoribosome biogenesis follows distinct molecular pathways that remain poorly understood. Here, we determine the cryo-EM structures of mitoribosomes isolated from human cell lines with either depleted or overexpressed mitoribosome assembly factor GTPBP5, allowing us to capture consecutive steps during mitoribosomal large subunit (mt-LSU) biogenesis. Our structures provide essential insights into the last steps of 16S rRNA folding, methylation and peptidyl transferase centre (PTC) completion, which require the coordinated action of nine assembly factors. We show that mammalian-specific MTERF4 contributes to the folding of 16S rRNA, allowing 16 S rRNA methylation by MRM2, while GTPBP5 and NSUN4 promote fine-tuning rRNA rearrangements leading to PTC formation. Moreover, our data reveal an unexpected involvement of the elongation factor mtEF-Tu in mt-LSU assembly, where mtEF-Tu interacts with GTPBP5, similar to its interaction with tRNA during translational elongation.
    DOI:  https://doi.org/10.1038/s41467-021-23617-8
  6. Front Cell Dev Biol. 2021 ;9 664099
      Somatic cell nuclear transfer (SCNT) is a key technology with broad applications that range from production of cloned farm animals to derivation of patient-matched stem cells or production of humanized animal organs for xenotransplantation. However, effects of aberrant epigenetic reprogramming on gene expression compromise cell and organ phenotype, resulting in low success rate of SCNT. Standard SCNT procedures include enucleation of recipient oocytes before the nuclear donor cell is introduced. Enucleation removes not only the spindle apparatus and chromosomes of the oocyte but also the perinuclear, mitochondria rich, ooplasm. Here, we use a Bos taurus SCNT model with in vitro fertilized (IVF) and in vivo conceived controls to demonstrate a ∼50% reduction in mitochondrial DNA (mtDNA) in the liver and skeletal muscle, but not the brain, of SCNT fetuses at day 80 of gestation. In the muscle, we also observed significantly reduced transcript abundances of mtDNA-encoded subunits of the respiratory chain. Importantly, mtDNA content and mtDNA transcript abundances correlate with hepatomegaly and muscle hypertrophy of SCNT fetuses. Expression of selected nuclear-encoded genes pivotal for mtDNA replication was similar to controls, arguing against an indirect epigenetic nuclear reprogramming effect on mtDNA amount. We conclude that mtDNA depletion is a major signature of perturbations after SCNT. We further propose that mitochondrial perturbation in interaction with incomplete nuclear reprogramming drives abnormal epigenetic features and correlated phenotypes, a concept supported by previously reported effects of mtDNA depletion on the epigenome and the pleiotropic phenotypic effects of mtDNA depletion in humans. This provides a novel perspective on the reprogramming process and opens new avenues to improve SCNT protocols for healthy embryo and tissue development.
    Keywords:  bovine; fetal tissues; mitochondrial DNA depletion; mitochondrial gene expression; nuclear transfer
    DOI:  https://doi.org/10.3389/fcell.2021.664099
  7. Bone. 2021 Jun 15. pii: S8756-3282(21)00220-9. [Epub ahead of print] 116058
      Small non-coding microRNAs (miRNAs) have the ability to target and bind to many mRNAs within the cytosol resulting in reduced protein expression and modulation of a number of cellular pathways and networks. In addition to the cytosol, miRNAs have been identified in other cellular compartments and organelles, including the mitochondria. While a few mitochondria-associated miRNAs (mitomiRs) are predicted to be derived from the mitochondrial genome, the majority appear to be transcribed from nuclear DNA and somehow transported into the mitochondria. These findings raise interesting questions about why miRNAs are located in the mitochondria and if they play a role in regulating processes within these organelles. Previously published work from our laboratory showed that miR-181a/b can regulate osteogenesis, in part, by enhancing mitochondrial metabolism. In other published studies, miR-181 paralogs and many other miRNAs have been identified in mitochondrial extracts derived from common cell lines and specific primary cells and tissues. Taken together, we were motivated to identify mitomiR expression profiles during in vitro osteogenesis. Specifically, we obtained RNA from purified mitochondrial extracts of human bone marrow-derived mesenchymal stem/stromal cells (MSCs) and from whole cell extracts of MSCs at day 0 or following osteogenic induction for 3, 7 and 14 days. Utilizing Affymetrix GeneChip™ miRNA 4.0 arrays, mitomiR expression signatures were determined at each time point. Based on the Affymetrix detection above background algorithm, the total number of miRNAs detected in MSC mitochondria extracts was 527 (non-induced MSCs), 627 (day 3 induced), 372 (day 7 induced) and 498 (day 14 induced). In addition, we identified significantly differentially-expressed mitomiRs at day 7 and day 14 of osteogenic induction when compared to day 0 (fold change ≥1.5; adjusted p value <0.05). In general, the most pronounced and highly significant changes in mitomiR expression during osteogenesis were observed at the day 7 time point. Interestingly, most miRNAs found to be differentially-expressed in mitochondria extracts did not show significantly altered expression in whole cell extracts at the same time points during osteoblast differentiation. This array study provides novel information on miRNAs associated with the mitochondria in MSCs during differentiation toward the osteoblast phenotype. These findings will guide future research to identify new miRNA candidates that may function in regulating mitochondrial function and/or bone formation, homeostasis or repair.
    Keywords:  Bone; Metabolism; MicroRNA; Mitochondria; MitomiR; Osteogenesis
    DOI:  https://doi.org/10.1016/j.bone.2021.116058
  8. Brain. 2021 Jun 15. pii: awab226. [Epub ahead of print]
      Axonal Charcot-Marie-Tooth neuropathies (CMT type 2) are caused by inherited mutations in various genes functioning in different pathways. The type of genes and multiplicity of mutations reflect the clinical and genetic heterogeneity in CMT2 disease, which complicates the diagnosis and has halted therapy development. Here, we used CMT2 patient-derived pluripotent stem cells (iPSCs) to identify common hallmarks of axonal degeneration shared by different CMT2 subtypes. We compared the cellular phenotypes of neurons differentiated from CMT2 patient iPSCs with those from healthy controls and a CRISPR/Cas9-corrected isogenic line. Our results demonstrate neurite network alterations along with extracellular electrophysiological abnormalities in the differentiated motor neurons. Progressive deficits in mitochondrial and lysosomal trafficking, as well as in mitochondrial morphology, were observed in all CMT2 patient lines. Differentiation of the same CMT2 iPSC-lines into peripheral sensory neurons, only gave rise to cellular phenotypes in subtypes with sensory involvement, supporting the notion that some gene mutations predominantly affect motor neurons. We revealed a common mitochondrial dysfunction in CMT2-derived motor neurons, supported by alterations in the expression pattern and oxidative phosphorylation, which could be recapitulated in the sciatic nerve tissue of a symptomatic mouse model. Inhibition of a dual leucine zipper kinase (DLK) could partially ameliorate the mitochondrial disease phenotypes in CMT2 subtypes. Altogether, our data reveals shared cellular phenotypes across different CMT2 subtypes and suggests that targeting such common pathomechanisms could allow the development of a uniform treatment for CMT2.
    Keywords:  Charcot-Marie-Tooth neuropathy; dual leucine kinase inhibitor; iPSC-derived motor and sensory neurons; mitochondrial dysfunction; phenotyping
    DOI:  https://doi.org/10.1093/brain/awab226
  9. Curr Opin Genet Dev. 2021 Jun 11. pii: S0959-437X(21)00063-0. [Epub ahead of print]70 54-60
      The adult mammalian heart cannot regenerate after myocardial injury because most cardiomyocytes lack the ability to proliferate. In contrast, cardiomyocytes of vertebrates such as zebrafish and urodele amphibians, but also those of fetal and early neonatal mammals, maintain the ability to proliferate and therefore support regeneration of injured tissue and recovery of cardiac function. Whether evolutionarily conserved regulatory mechanisms of cardiomyocyte proliferation exist and, if so, whether they are modifiable to allow cardiac regeneration in adult mammals are questions of great scientific and medical interest. Environmental hypoxia, hypoxia-induced cellular signaling, and mitochondrial metabolism have recently emerged as key regulators of the cardiomyocyte cell cycle and cardiac regeneration in vertebrates. In this review, we address the cardiac regenerative capacity of several model animals and discuss potential strategies related to hypoxia and mitochondrial metabolism for induction of therapeutic heart regeneration.
    DOI:  https://doi.org/10.1016/j.gde.2021.05.009