bims-mireme Biomed News
on Mitochondria in regenerative medicine
Issue of 2021–03–28
twelve papers selected by
Brian Spurlock, University of Alabama at Birmingham



  1. Front Immunol. 2021 ;12 606781
      Musculoskeletal stromal cells' (MSCs') metabolism impacts cell differentiation as well as immune function. During osteogenic and adipogenic differentiation, BM-MSCs show a preference for glycolysis during proliferation but shift to an oxidative phosphorylation (OxPhos)-dependent metabolism. The MSC immunoregulatory fate is achieved with cell polarization, and the result is sustained production of immunoregulatory molecules (including PGE2, HGF, IL1RA, IL6, IL8, IDO activity) in response to inflammatory stimuli. MSCs adapt their energetic metabolism when acquiring immunomodulatory property and shift to aerobic glycolysis. This can be achieved via hypoxia, pretreatment with small molecule-metabolic mediators such as oligomycin, or AKT/mTOR pathway modulation. The immunoregulatory effect of MSC on macrophages polarization and Th17 switch is related to the glycolytic status of the MSC. Indeed, MSCs pretreated with oligomycin decreased the M1/M2 ratio, inhibited T-CD4 proliferation, and prevented Th17 switch. Mitochondrial activity also impacts MSC metabolism. In the bone marrow, MSCs are present in a quiescent, low proliferation, but they keep their multi-progenitor function. In this stage, they appear to be glycolytic with active mitochondria (MT) status. During MSC expansion, we observed a metabolic shift toward OXPhos, coupled with an increased MT activity. An increased production of ROS and dysfunctional mitochondria is associated with the metabolic shift to glycolysis. In contrast, when MSC underwent chondro or osteoblast differentiation, they showed a decreased glycolysis and inhibition of the pentose phosphate pathway (PPP). In parallel the mitochondrial enzymatic activities increased associated with oxidative phosphorylation enhancement. MSCs respond to damaged or inflamed tissue through the transfer of MT to injured and immune cells, conveying a type of signaling that contributes to the restoration of cell homeostasis and immune function. The delivery of MT into injured cells increased ATP levels which in turn maintained cellular bioenergetics and recovered cell functions. MSC-derived MT may be transferred via tunneling nanotubes to undifferentiated cardiomyocytes and leading to their maturation. In this review, we will decipher the pathways and the mechanisms responsible for mitochondria transfer and activity. The eventual reversal of the metabolic and pro-inflammatory profile induced by the MT transfer will open new avenues for the control of inflammatory diseases.
    Keywords:  immunometabolism; immunosuppression; mitochondria; musculoskeletal progenitor/stromal cells; stem cell
    DOI:  https://doi.org/10.3389/fimmu.2021.606781
  2. Proc Natl Acad Sci U S A. 2021 Mar 30. pii: e2006786118. [Epub ahead of print]118(13):
      Stem cells divide asymmetrically to generate a stem cell and a differentiating daughter cell. Yet, it remains poorly understood how a stem cell and a differentiating daughter cell can receive distinct levels of niche signal and thus acquire different cell fates (self-renewal versus differentiation), despite being adjacent to each other and thus seemingly exposed to similar levels of niche signaling. In the Drosophila ovary, germline stem cells (GSCs) are maintained by short range bone morphogenetic protein (BMP) signaling; the BMP ligands activate a receptor that phosphorylates the downstream molecule mothers against decapentaplegic (Mad). Phosphorylated Mad (pMad) accumulates in the GSC nucleus and activates the stem cell transcription program. Here, we demonstrate that pMad is highly concentrated in the nucleus of the GSC, while it quickly decreases in the nucleus of the differentiating daughter cell, the precystoblast (preCB), before the completion of cytokinesis. We show that a known Mad phosphatase, Dullard (Dd), is required for the asymmetric partitioning of pMad. Our mathematical modeling recapitulates the high sensitivity of the ratio of pMad levels to the Mad phosphatase activity and explains how the asymmetry arises in a shared cytoplasm. Together, these studies reveal a mechanism for breaking the symmetry of daughter cells during asymmetric stem cell division.
    Keywords:  BMP signaling; Drosophila; Virtual Cell; asymmetric division; germline stem cells
    DOI:  https://doi.org/10.1073/pnas.2006786118
  3. Cell Biol Int. 2021 Mar 25.
      During myoblast differentiation, mitochondria undergo numerous changes that are necessary for the progression of the myogenic program. Notably, we previously showed that alteration in mitochondrial activity were able to control the expression of keys regulator of cell cycle withdrawal and terminal differentiation. Here, we assessed whether inhibition of one of the respiratory complexes was a key factor in the regulation of myogenic differentiation in C2C12 cells, and was associated with alteration in ROS production. C2C12 cells were treated from proliferation to differentiation with specific inhibitors of mitochondrial complexes at concentration that were inhibiting respiration but not altering cell morphology. Proliferation was significantly repressed with inhibition of complexes I, II and III, or mitochondrial protein synthesis (using CHL treatment), while complex IV inhibition did not alter myoblast proliferation compared to control cells. Moreover, inhibition of complex I and II altered cell cycle regulators, with p21 protein expression upregulated since proliferation and p27 protein expression reduced at differentiation. Myotubes formation and myogenin expression were blunted with complex I and II inhibitors while MyoD protein expression was maintained suggesting an alteration in its transcriptional activity. Finally, a decrease in overall ROS production was observed with continuous inhibition of mitochondrial complexes I to IV. In summary, our data provide evidence that complexes I and II may be the primary regulators of C2C12 myogenic differentiation. This occurs through specific regulation of myogenic rather than cell cycle regulators expression, and ROS production at mitochondrial rather than cell level. This article is protected by copyright. All rights reserved.
    Keywords:  ROS; mitochondria; myogenic differentiation; respiratory complexes
    DOI:  https://doi.org/10.1002/cbin.11602
  4. Mol Brain. 2021 Mar 23. 14(1): 58
      Mitochondrial structural changes are associated with the regulation of mitochondrial function, apoptosis, and neurodegenerative diseases. PRKN is known to be involved with various mechanisms of mitochondrial quality control including mitochondrial structural changes. Parkinson's disease (PD) with PRKN mutations is characterized by the preferential degeneration of dopaminergic neurons in the substantia nigra pars compacta, which has been suggested to result from the accumulation of damaged mitochondria. However, ultrastructural changes of mitochondria specifically in dopaminergic neurons derived from iPSC have rarely been analyzed. The main reason for this would be that the dopaminergic neurons cannot be distinguished directly among a mixture of iPSC-derived differentiated cells under electron microscopy. To selectively label dopaminergic neurons and analyze mitochondrial morphology at the ultrastructural level, we generated control and PRKN-mutated patient tyrosine hydroxylase reporter (TH-GFP) induced pluripotent stem cell (iPSC) lines. Correlative light-electron microscopy analysis and live cell imaging of GFP-expressing dopaminergic neurons indicated that iPSC-derived dopaminergic neurons had smaller and less functional mitochondria than those in non-dopaminergic neurons. Furthermore, the formation of spheroid-shaped mitochondria, which was induced in control dopaminergic neurons by a mitochondrial uncoupler, was inhibited in the PRKN-mutated dopaminergic neurons. These results indicate that our established TH-GFP iPSC lines are useful for characterizing mitochondrial morphology, such as spheroid-shaped mitochondria, in dopaminergic neurons among a mixture of various cell types. Our in vitro model would provide insights into the vulnerability of dopaminergic neurons and the processes leading to the preferential loss of dopaminergic neurons in patients with PRKN mutations.
    Keywords:  Dopaminergic neurons; IPSC; Mitochondria; PRKN; Ultrastructure
    DOI:  https://doi.org/10.1186/s13041-021-00771-0
  5. Stem Cell Res Ther. 2021 Mar 24. 12(1): 208
       BACKGROUND: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great promise for regenerative medicine and in drugs screening. Despite displaying key cardiomyocyte phenotypic characteristics, they more closely resemble fetal/neonatal cardiomyocytes and are still immature; these cells mainly rely on glucose as a substrate for metabolic energy, while mature cardiomyocytes mainly employ oxidative phosphorylation of fatty acids. Studies showed that the alteration of metabolism pattern from glycolysis to oxidative phosphorylation improve the maturity of hiPSC-CMs. As a transcription factor, accumulating evidences showed the important role of NRF2 in the regulation of energy metabolism, which directly regulates the expression of mitochondrial respiratory complexes. Therefore, we hypothesized that NRF2 is involved in the maturation of hiPSC-CMs.
    METHODS: The morphological and functional changes related to mitochondria and cell maturation were analyzed by knock-down and activation of NRF2.
    RESULTS: The results showed that the inhibition of NRF2 led to the retardation of cell maturation. The activation of NRF2 leads to a more mature hiPSC-CMs phenotype, as indicated by the increase of cardiac maturation markers, sarcomere length, calcium transient dynamics, the number and fusion events of mitochondria, and mitochondrial respiration. Bioinformatics analysis showed that in addition to metabolism-related genes, NRF2 also activates the expression of myocardial ion channels.
    CONCLUSIONS: These findings indicated that NRF2 plays an important role in the maturation of hiPSC-CMs. The present work provides greater insights into the molecular regulation of hiPSC-CMs metabolism and theoretical basis in drug screening, disease modeling, and alternative treatment.
    Keywords:  Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs); Metabolism; Nuclear factor erythroid 2 p45-related factor 2 (NRF2)
    DOI:  https://doi.org/10.1186/s13287-021-02264-2
  6. J Cell Mol Med. 2021 Mar 23.
      Regenerative therapeutic approaches involving the transplantation of stem cells differentiated into insulin-producing cells are being studied in patients with rapidly progressing severe diabetes. Adipose-derived mesenchymal stem cells have been reported to have varied cellular characteristics depending on the biological environment of the location from which they were harvested. However, the characteristics of mesenchymal stem cells in type II diabetes have not been clarified. In this study, we observed the organelles of mesenchymal stem cells from patients with type II diabetes under a transmission electron microscope to determine the structure of stem cells in type II diabetes. Transmission electron microscopic observation of mesenchymal stem cells from healthy volunteers (N-ADSC) and those from patients with type II diabetes (T2DM-ADSC) revealed enlarged nuclei and degenerated mitochondrial cristae in T2DM-ADSCs. Moreover, T2DM-ADSCs were shown to exhibit a lower expression of Emerin, a constituent protein of the nuclear membrane, and a decreased level of mitochondrial enzyme activity. In this study, we successfully demonstrated the altered structure of nuclear membrane and the decreased mitochondrial enzyme activity in adipose-derived mesenchymal cells from patients with type II diabetes. These findings have contributed to the understanding of type II diabetes-associated changes in mesenchymal stem cells used for regenerative therapy.
    Keywords:  adipose-derived mesenchymal stem cells; mitochondria; nuclear membrane; stem cell; transmission electron microscopy; type II diabetes
    DOI:  https://doi.org/10.1111/jcmm.16484
  7. Sci Rep. 2021 Mar 23. 11(1): 6671
      The mitochondrion is one of the key organelles for maintaining cellular homeostasis. External environmental stimuli and internal regulatory processes may alter the metabolism and functions of mitochondria. To understand these activities of mitochondria, it is critical to probe the key metabolic molecules inside these organelles. In this study, we used label-free chemical imaging modalities including coherent anti-Stokes Raman scattering and multiphoton-excited fluorescence to investigate the mitochondrial activities in living cancer cells. We found that hypothermia exposure tends to induce fatty-acid (FA) accumulation in some mitochondria of MIAPaCa-2 cells. Autofluorescence images show that the FA-accumulated mitochondria also have abnormal metabolism of nicotinamide adenine dinucleotide hydrogen, likely induced by the dysfunction of the electron transport chain. We also found that when the cells were re-warmed to physiological temperature after a period of hypothermia, the FA-accumulated mitochondria changed their structural features. To the best of our knowledge, this is the first time that FA accumulation in mitochondria was observed in live cells. Our research also demonstrates that multimodal label-free chemical imaging is an attractive tool to discover abnormal functions of mitochondria at the single-organelle level and can be used to quantify the dynamic changes of these organelles under perturbative conditions.
    DOI:  https://doi.org/10.1038/s41598-021-85795-1
  8. Development. 2021 Mar 25. pii: dev.199026. [Epub ahead of print]
      Mammalian heart development relies hugely on cardiomyocyte mitochondrial maturation and metabolism. Embryonic cardiomyocytes make metabolic shift from anaerobic glycolysis to oxidative metabolism by mid-gestation. The VHL-HIF signaling favors anaerobic glycolysis but this process subsides by E14.5. Meanwhile, the oxidative metabolism becomes activated but its regulation is largely elusive. Here, we first pinpointed a critical temporal window for mitochondrial maturation and metabolic shift, and uncovered the pivotal role of the SRCAP chromatin remodeling complex in these processes. Disruption of this complex massively suppressed the transcription of key genes required for the tricarboxylic acid (TCA) cycle, fatty acid β-oxidation and ubiquinone biosynthesis, and destroyed respirasome stability. Furthermore, we found that the SRCAP complex functioned through H2A.Z deposition to activate transcription of metabolic genes. These findings unveiled the important physiological functions of SRCAP complex in regulating mitochondrial maturation and promoting oxidative metabolism during heart development, and shed new light on the transcriptional regulation of ubiquinone biosynthesis.
    Keywords:  H2A.Z; Heart development; Metabolism; Mitochondria; SRCAP chromatin remodeling complex; Znhit1
    DOI:  https://doi.org/10.1242/dev.199026
  9. Autophagy. 2021 Mar 23.
      Mitochondria are the main cellular energy powerhouses and supply most of the energy in the form of ATP to fuel essential neuronal functions through oxidative phosphorylation (OXPHOS). In Alzheimer disease (AD), metabolic and mitochondrial disruptions are an early feature preceding any histopathological and clinical manifestations. Mitochondrial malfunction is also linked to synaptic defects in early AD. Mitophagy serves as a key cellular quality control mechanism involving sequestration of damaged mitochondria within autophagosomes and their subsequent degradation in lysosomes. However, it remains largely unknown whether mitophagy is involved in the regulation of energy metabolism in neurons, and if so, whether metabolic deficiency in AD is attributed to mitophagy dysfunction. Here we reveal that mitophagy is broadly activated in metabolically enhanced neurons upon OXPHOS stimulation, which sustains high energetic activity by increasing mitochondrial turnover and hence facilitating mitochondrial maintenance. Unexpectedly, in AD-related mutant HsAPP Tg mouse brains, early stimulation of OXPHOS activity fails to correct energy deficits but exacerbates synapse loss as a consequence of mitophagy failure. Excitingly, lysosomal enhancement in AD neurons restores impaired metabolic function by promoting elimination of damaged mitochondria, protecting against synaptic damage in AD mouse brains. Taken together, we propose a new mechanism by which mitophagy controls bioenergetic status in neurons, furthering our understanding of the direct impact of mitophagy defects on AD-linked metabolic deficits and shedding light on the development of novel therapeutic strategies to treat AD by the early stimulation of mitochondrial metabolism combined with elevation of lysosomal proteolytic activity.
    Keywords:  Alzheimer; bioenergetics; energy metabolism; lysosomal proteolysis; metabolic deficiency; mitochondrial stress; mitophagosome; neuronal mitophagy; retrograde transport; synapse loss
    DOI:  https://doi.org/10.1080/15548627.2021.1907167
  10. FASEB J. 2021 Apr;35(4): e21278
      Mitochondria share attributes of vesicular transport with their bacterial ancestors given their ability to form mitochondrial-derived vesicles (MDVs). MDVs are involved in mitochondrial quality control and their formation is enhanced with stress and may, therefore, play a potential role in mitochondrial-cellular communication. However, MDV proteomic cargo has remained mostly undefined. In this study, we strategically used an in vitro MDV budding/reconstitution assay on cardiac mitochondria, followed by graded oxidative stress, to identify and characterize the MDV proteome. Our results confirmed previously identified cardiac MDV markers, while also revealing a complete map of the MDV proteome, paving the way to a better understanding of the role of MDVs. The oxidative stress vulnerability of proteins directed the cargo loading of MDVs, which was enhanced by antimycin A (Ant-A). Among OXPHOS complexes, complexes III and V were found to be Ant-A-sensitive. Proteins from metabolic pathways such as the TCA cycle and fatty acid metabolism, along with Fe-S cluster, antioxidant response proteins, and autophagy were also found to be Ant-A sensitive. Intriguingly, proteins containing hyper-reactive cysteine residues, metabolic redox switches, including professional redox enzymes and those that mediate iron metabolism, were found to be components of MDV cargo with Ant-A sensitivity. Last, we revealed a possible contribution of MDVs to the formation of extracellular vesicles, which may indicate mitochondrial stress. In conclusion, our study provides an MDV proteomics signature that delineates MDV cargo selectivity and hints at the potential for MDVs and their novel protein cargo to serve as vital biomarkers during mitochondrial stress and related pathologies.
    Keywords:  hyper-reactive cysteine residues; mitochondrial iron transport; mitochondrial quality control; mitochondrial stress; mitochondrial-derived vesicle proteome
    DOI:  https://doi.org/10.1096/fj.202002151R
  11. FASEB J. 2021 Apr;35(4): e21426
      Mitochondrial remodeling through fusion and fission is crucial for progenitor cell differentiation but its role in myogenesis is poorly understood. Here, we characterized the function of mitofusin 2 (Mfn2), a mitochondrial outer membrane protein critical for mitochondrial fusion, in muscle progenitor cells (myoblasts). Mfn2 expression is upregulated during myoblast differentiation in vitro and muscle regeneration in vivo. Targeted deletion of Mfn2 gene in myoblasts (Mfn2MKO ) increases oxygen-consumption rates (OCR) associated with the maximal respiration and spare respiratory capacity, and increased levels of reactive oxygen species (ROS). Skeletal muscles of Mfn2MKO mice exhibit robust mitochondrial swelling with normal mitochondrial DNA content. Additionally, mitochondria isolated from Mfn2MKO muscles have reduced OCR at basal state and for complex I respiration, associated with decreased levels of complex I proteins NDUFB8 (NADH ubiquinone oxidoreductase subunit B8) and NDUFS3 (NADH ubiquinone oxidoreductase subunit S3). However, Mfn2MKO has no obvious effects on myoblast differentiation, muscle development and function, and muscle regeneration. These results demonstrate a novel role of Mfn2 in regulating mitochondrial complex I protein abundance and respiratory functions in myogenic progenitors and myofibers.
    Keywords:  Mfn2; mitochondrion; myogenesis; myogenic progenitor cells; oxidative respiration
    DOI:  https://doi.org/10.1096/fj.202002464R
  12. Front Aging Neurosci. 2021 ;13 632374
      White matter lesions (WMLs) are a type of cerebrovascular disorder accompanied by demyelination and cognitive decline. Dl-3-n-butylphthalide (D1-NBP) is a neuroprotective drug used for the treatment of ischemic cerebrovascular diseases, although the function of DI-NBP on WML is still not clear. This study aims to investigate whether DI-NBP affects cognitive function and ameliorates demyelination in a model of WML. The bilateral carotid artery stenosis (BCAS) mouse model and in vitro brain slice cultures with low glucose and low oxygen (LGLO) treatment were adopted. The Dl-NBP was administered intragastrically for 28 days after BCAS or added at a dose of 50 μm for 48 h after LGLO. Spatial learning and memory were evaluated by an eight-arm radial maze. Demyelination was detected using a TEM. Mitochondrial dynamics were assessed by time-lapse imaging in the cultured brain slices. The function of the synapse was evaluated by the patch clamp technique. In BCAS mice, obvious demyelination and cognitive decline were observed, while both were significantly relieved by a high-dose D1-NBP treatment (100 mg/kg). Along with demyelination, mitochondrial accumulation in the axons was significantly increased in the BCAS mice model, but with the treatment of a high-dose D1-NBP, mitochondrial accumulation was mitigated, and the anterograde/retrograde transport of mitochondria was increased. Following the improved anterograde/retrograde transport of mitochondria, the synapse activity was significantly upregulated while the reactive oxygen species (ROS) generation was remarkably decreased in the cultured brain slices. In addition, we identified syntaphilin (SNPH) as the downstream target of D1-NBP. The overexpression of SNPH mediated the effects of D1-NBP in mitigating axonal mitochondrial accumulation. In conclusion, the D1-NBP treatment significantly relieved demyelination and improved spatial learning and memory in the WML model by promoting mitochondrial dynamics. These neuroprotective effects of D1-NBP were mediated by inhibiting the mitochondrial arching protein, SNPH, which provided a potential therapeutic target for WML.
    Keywords:  Dl-3-n-butylphthalide; cognitive impairment; demyelination; mitochondria dynamics; white matter lesions
    DOI:  https://doi.org/10.3389/fnagi.2021.632374