Biochem Pharmacol. 2026 Jan 14. pii: S0006-2952(26)00035-3. [Epub ahead of print]
117704
Myocardial ischemic injury involves a multi-layered pathological cascade driven by interconnected energy metabolism disorders, calcium overload, oxidative stress, mitochondrial dysfunction, and inflammatory responses. Ischemia-hypoxia impairs mitochondrial oxidative phosphorylation, causing ATP depletion, acidosis, and calcium overload. Reperfusion exacerbates injury through ROS burst, mPTP opening, and NLRP3 inflammasome activation, leading to pro-inflammatory cytokine release. Sustained endoplasmic reticulum stress promotes apoptosis via the PERK/CHOP pathway, forming a vicious cycle with oxidative stress and inflammation. These processes collectively trigger diverse programmed cell death modalities-apoptosis, pyroptosis, ferroptosis, necroptosis, and cuproptosis-while microcirculatory disturbances cause the "no-reflow" phenomenon, culminating in irreversible damage. Therapeutic strategies are shifting from revascularization to multi-target interventions. Reperfusion injury is mitigated by ischemic conditioning (IPoC, RIC) via RISK/SAFE pathways and ALDH2-SIRT3 axis activation. Cell death is targeted using ferroptosis inhibitors (e.g., Liproxstatin-1), NLRP3/caspase-1 blockers, and autophagy regulators (e.g., Astragaloside IV). Mitochondrial/metabolic therapies include mitochondrial-targeted drugs (e.g., CsA@PLGA-PEG-SS31), metabolic modulators (Trimetazidine), and neuroendocrine agents (ARNI, SGLT2 inhibitors). Regenerative approaches employ stem cells/exosomes, gene therapy, and tissue engineering via paracrine signaling. Precision medicine integrates multi-omics and AI for risk stratification, while biomimetic nanocarriers enhance drug delivery. Future therapies should co-target the "energy-death-inflammation" network to advance myocardial ischemia treatment toward systemic repair and improved clinical outcomes.
Keywords: Calcium overload; Inflammasome; Mitochondrial permeability transition pore; Multi-target therapy; Myocardial ischemia–reperfusion injury; Programmed cell death