bims-miptne Biomed News
on Mitochondrial permeability transition pore-dependent necrosis
Issue of 2024–10–13
five papers selected by
Oluwatobi Samuel Adegbite, University of Liverpool



  1. Eur J Clin Invest. 2024 Oct 10. e14331
      Ischemia/reperfusion injury is attracting continuous interest in science for two reasons: because it affects several clinical conditions and because it has been identified, albeit in broad terms, the molecular entity becoming activated by the reperfusion damage paradoxes. Indeed, calcium, oxygen-dependent oxidative stress and pH would activate conformational changes in the mitochondrial cristae embedded F1/FO ATP synthase, allowing the formation of pores in the inner mitochondrial membrane thus increasing its permeability. This is a key determinant for mitochondrial stress, cell death and tissue dysfunction. Targeting each of these factors has never contributed to improved clinical outcome of the patients affected by reperfusion damage; now, the focus on the PTP opening could represent the closest target to solve this pathway made by extensive cell death when the tissues become revascularized. In this review, we summarized last knowledge about the structure, the modulation and the therapeutic targeting of the PTP, focusing on ATP synthase and cardiac ischemia/reperfusion.
    Keywords:  calcium; cardiovascular diseases; mitochondria; permeability transition pore; subunit c
    DOI:  https://doi.org/10.1111/eci.14331
  2. Biochem Soc Trans. 2024 Oct 11. pii: BST20240319. [Epub ahead of print]
      The mitochondrial intermembrane space (IMS) is a highly protected compartment, second only to the matrix. It is a crucial bridge, coordinating mitochondrial activities with cellular processes such as metabolites, protein, lipid, and ion exchange. This regulation influences signaling pathways for metabolic activities and cellular homeostasis. The IMS harbors various proteins critical for initiating apoptotic cascades and regulating reactive oxygen species production by controlling the respiratory chain. Calcium (Ca2+), a key intracellular secondary messenger, enter the mitochondrial matrix via the IMS, regulating mitochondrial bioenergetics, ATP production, modulating cell death pathways. IMS acts as a regulatory site for Ca2+ entry due to the presence of different Ca2+ sensors such as MICUs, solute carriers (SLCs); ion exchangers (LETM1/SCaMCs); S100A1, mitochondrial glycerol-3-phosphate dehydrogenase, and EFHD1, each with unique Ca2+ binding motifs and spatial localizations. This review primarily emphasizes the role of these IMS-localized Ca2+ sensors concerning their spatial localization, mechanism, and molecular functions. Additionally, we discuss how these sensors contribute to the progression and pathogenesis of various human health conditions and diseases.
    Keywords:  Ca2+ sensors; LETM1; MICU; SCaMs; SLC25A12/13; mitochondrial intermembrane space
    DOI:  https://doi.org/10.1042/BST20240319
  3. Commun Biol. 2024 Oct 10. 7(1): 1294
      IP3 receptor (IP3R)-mediated Ca2+ transfer at the mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) drives mitochondrial Ca2+ uptake and oxidative metabolism and is linked to different pathologies, including Parkinson's disease (PD). The dependence of Ca2+ transfer efficiency on the ER-mitochondria distance remains unexplored. Employing molecular rulers that stabilize ER-mitochondrial distances at 5 nm resolution, and using genetically encoded Ca2+ indicators targeting the ER lumen and the sub-mitochondrial compartments, we now show that a distance of ~20 nm is optimal for Ca2+ transfer and mitochondrial oxidative metabolism due to enrichment of IP3R at MERCS. In human iPSC-derived astrocytes from PD patients, 20 nm MERCS were specifically reduced, which correlated with a reduction of mitochondrial Ca2+ uptake. Stabilization of the ER-mitochondrial interaction at 20 nm, but not at 10 nm, fully rescued mitochondrial Ca2+ uptake in PD astrocytes. Our work determines with precision the optimal distance for Ca2+ flux between ER and mitochondria and suggests a new paradigm for fine control over mitochondrial function.
    DOI:  https://doi.org/10.1038/s42003-024-06933-9
  4. Dev Cell. 2024 Oct 07. pii: S1534-5807(24)00535-5. [Epub ahead of print]59(19): 2519-2522
      Various types of cell death program are needed for cells to respond to changes in physiological conditions. In this collection of Voices, we asked scientists to tell the story behind their contributions to the identification and mechanistic dissection of cell death pathways and to discuss future directions for such research.
    DOI:  https://doi.org/10.1016/j.devcel.2024.09.007
  5. Acta Neuropathol Commun. 2024 Oct 10. 12(1): 161
      Valosin-containing protein (VCP) is a ubiquitously expressed type II AAA+ ATPase protein, implicated in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This study aimed to explore the impact of the disease-causing VCPR191Q/wt mutation on mitochondrial function using a CRISPR/Cas9-engineered neuroblastoma cell line. Mitochondria in these cells are enlarged, with a depolarized mitochondrial membrane potential associated with increased respiration and electron transport chain activity. Our results indicate that mitochondrial hypermetabolism could be caused, at least partially, by increased calcium-induced opening of the permeability transition pore (mPTP), leading to mild mitochondrial uncoupling. In conclusion, our findings reveal a central role of the ALS/FTD gene VCP in maintaining mitochondrial homeostasis and suggest a model of pathogenesis based on progressive alterations in mPTP physiology and mitochondrial energetics.
    Keywords:  Amyotrophic lateral sclerosis; Frontotemporal dementia; Mitochondria; Mitochondrial dysfunction; Mitochondrial permeability transition pore; VCP
    DOI:  https://doi.org/10.1186/s40478-024-01866-0