bims-minimp Biomed News
on Mitochondria, innate immunity, proteostasis
Issue of 2021–05–30
fifty-five papers selected by
Hanna Salmonowicz, Newcastle University



  1. Int J Biochem Cell Biol. 2021 May 19. pii: S1357-2725(21)00091-1. [Epub ahead of print] 106013
      The NLR family pyrin domain containing 3 (NLRP3) inflammasome is responsible for the sensation of various pathogenic and non-pathogenic damage signals and has a vital role in neuroinflammation and neural diseases. Various stimuli, such as microbial infection, misfolded protein aggregates, and aberrant deposition of proteins including amyloid-β, α-synuclein can induce NLRP3 inflammasome in neural cells. Once triggered, the NLRP3 inflammasome leads to the activation of caspase-1, which in turn activates inflammatory cytokines, such as interleukin-1β and interleukin -18, and induces pyroptotic cell death. Mitochondria are critically involved in diverse cellular processes and are involved in regulating cellular redox status, calcium levels, inflammasome activation, and cell death. Mitochondrial dysfunction and subsequent accumulation of mitochondrial reactive oxygen species, mitochondrial deoxyribonucleic acid, and other mitochondria-associated proteins and lipids play vital roles in the instigation of the NLRP3 inflammasome. In addition, the processes of mitochondrial dynamics, such as fission and fusion, are essential in the maintenance of mitochondrial integrity and their imbalance also promotes NLRP3 inflammasome activation. In this connection, mitophagy-mediated maintenance of mitochondrial homeostasis restricts NLRP3 inflammasome hyperactivation and its consequences in various neurological disorders. Hence, mitophagy can be exploited as a potential strategy to target damaged mitochondria-derived NLRP3 inflammasome activation and its lethal consequences. Therefore, the identification of novel mitophagy modulators has promising therapeutic potential for NLRP3 inflammasome-associated neuronal diseases.
    Keywords:  Inflammasome; NLRP3; mitochondria; mitochondrial dynamics; mitophagy
    DOI:  https://doi.org/10.1016/j.biocel.2021.106013
  2. Elife. 2021 May 26. pii: e67624. [Epub ahead of print]10
      Dysfunction of the mitochondrial electron transport chain (mETC) is a major cause of human mitochondrial diseases. To identify determinants of mETC function, we screened a genome-wide human CRISPRi library under oxidative metabolic conditions with selective inhibition of mitochondrial Complex III and identified ovarian carcinoma immunoreactive antigen (OCIA) domain-containing protein 1 (OCIAD1) as a Complex III assembly factor. We find that OCIAD1 is an inner mitochondrial membrane protein that forms a complex with supramolecular prohibitin assemblies. Our data indicate that OCIAD1 is required for maintenance of normal steady-state levels of Complex III and the proteolytic processing of the catalytic subunit cytochrome c1 (CYC1). In OCIAD1 depleted mitochondria, unprocessed CYC1 is hemylated and incorporated into Complex III. We propose that OCIAD1 acts as an adaptor within prohibitin assemblies to stabilize and/or chaperone CYC1 and to facilitate its proteolytic processing by the IMMP2L protease.
    Keywords:  Complex III; cell biology; cytochrome c1; electron transport chain; human; mitochondria; prohibitin; protease
    DOI:  https://doi.org/10.7554/eLife.67624
  3. Neurosci Lett. 2021 May 19. pii: S0304-3940(21)00345-1. [Epub ahead of print]756 135967
      Inflammation is a fundamental element in secondary brain injury (SBI) besides intracerebral hemorrhage (ICH). Pyrin domain that contains 3 inflammasome (NLRP3) was regarded as a key role of the nod-like receptor family and played an important part in the inflammatory response following ICH-induced injury. FUN14 domain containing 1 (FUNDC1) is a kind of mitophagy receptor, which can eliminate mitochondrial dysfunction after hypoxia and mitochondrial stress. Previous research showed that mitophagy prevents inflammation through inhibiting NLRP3 inflammasome pathway. However, the relationship between FUNDC1 and ICH-induced inflammatory response stays uncertain. In this study, we investigate that FUNDC1 inhibit NLRP3 inflammasome activation by promoting mitophagy, thereby alleviate ICH-induced injury. We established ICH model by injecting tail venous blood into the basal ganglia of C57 mice (healthy, male adult). We injected siRNA to knockdown FUNDC1. In order to deeply seek for the mechanisms of FUNDC1 in ICH-induced injury, FUNDC1 was overexpressed by adeno-associated virus (AAV) and mitophagy was suppressed by specific inhibitor (mdivi-1). The protein level of FUNDC1 was upregulated and got peak at 12h after ICH. We noticed that silencing FUNDC1 can suppress mitophagy, promote NLRP3-mediated inflammation and exacerbate ICH injury. Furthermore, the results indicated that mitophagy participated in the inhibitory effect of FUNDC1 on NLRP3-mediated inflammatory response after ICH. Our results showed that FUNDC1 alleviated ICH-induced inflammation in mice by promoting mitophagy. Those data suggested that FUNDC1 may be a potential target for the treatment of ICH.
    Keywords:  FUNDC1; Inflammation; Intracerebral hemorrhage; Mitophagy; NLRP3
    DOI:  https://doi.org/10.1016/j.neulet.2021.135967
  4. J Mol Cell Cardiol. 2021 May 24. pii: S0022-2828(21)00104-8. [Epub ahead of print]
      Myocardial infarction (MI)-induced the activation of NLRP3 inflammasome has been well known to aggravate myocardial injury and cardiac dysfunction by causing inflammation and pyroptosis in the heart. Circular RNAs (circRNAs) have been demonstrated to play critical roles in cardiovascular diseases. However, the functions and mechanisms of circRNAs in modulating cardiac inflammatory response and cardiomyocyte pyroptosis remain largely unknown. We revealed that circHelz, a novel circRNA transcribed from the helicase with zinc finger (Helz) gene, was significantly upregulated in both the ischemic myocardium of MI mouse and neonatal mouse ventricular cardiomyocytes (NMVCs) exposed to hypoxia. Overexpression of circHelz caused cardiomyocyte injury in NMVCs by activating the NLRP3 inflammasome and inducing pyroptosis, while circHelz silencing reduced these effects induced by hypoxia. Furthermore, knockdown of circHelz remarkably attenuated NLRP3 expression, decreased myocardial infarct size, pyroptosis, inflammation, and increased cardiac function in vivo after MI. Overexpression of miR-133a-3p in cardiomyocytes greatly prevented pyroptosis in the presence of hypoxia or circHelz by targeting NLRP3 in NMVCs. Mechanistically, circHelz functioned as an endogenous sponge for miR-133a-3p via suppressing its activity. Overall, our results demonstrate that circHelz causes myocardial injury by triggering the NLRP3 inflammasome-mediated pro-inflammatory response and subsequent pyroptosis in cardiomyocytes by inhibiting miR-133a-3p function. Therefore, interfering with circHelz/miR-133a-3p/NLRP3 axis might be a promising therapeutic approach for ischemic cardiac diseases.
    Keywords:  CircHelz; MiR-133a-3p; Myocardial infarction; NLRP3 inflammasome; Pyroptosis
    DOI:  https://doi.org/10.1016/j.yjmcc.2021.05.010
  5. Cell Rep. 2021 May 25. pii: S2211-1247(21)00503-9. [Epub ahead of print]35(8): 109161
      Adipose tissue macrophages (ATMs) regulate the occurrence of obesity and its related diseases. Here, we found that serine/threonine protein kinase 24 (Stk24) expression is downregulated significantly in ATMs in obese subjects or obese subjects with type 2 diabetes and mice fed a high-fat diet (HFD). We further identified that glucolipotoxicity downregulated Stk24 expression in ATMs. Stk24-deficient mice develop severe HFD-induced metabolic disorders and insulin insensitivity. Mechanistically, Stk24 intervenes in NLRP3 inflammasome assembly in ATMs by associating directly with NLRP3, decreasing interleukin-1β (IL-1β) secretion. Accordingly, Stk24 deficiency in the hematopoietic system promotes NLRP3 inflammasome activation, which contributes to exacerbation of metabolic disorders. Intriguingly, Stk24 expression correlates negatively with body mass index (BMI) and the levels of glucose, cholesterol, triglycerides, and low-density lipoprotein in human subjects. These findings provide insights into the function and clinical implications of Stk24 in obesity-mediated metabolic disorders.
    Keywords:  NLRP3 inflammasome; Stk24; adipose tissue macrophages; obesity-associated metabolic disorder; serine\threonine protein kinase 24
    DOI:  https://doi.org/10.1016/j.celrep.2021.109161
  6. iScience. 2021 May 21. 24(5): 102427
      Nuclear-erythroid-2-related factor 2 (Nrf2) is involved in the pathogenesis of different liver diseases. Herein, we first demonstrated that Nrf2 expression was diminished in nonalcoholic steatohepatitis (NASH) liver macrophages. In myeloid Nrf2-deficiency mice, aggravated liver steatosis and inflammation in high-fat-diet (HFD)-fed mice were observed compared with the chow-diet group. Moreover, the increasing inflammatory cytokines influenced the lipid metabolism in hepatocytes in vivo and in vitro. Further study showed Nrf2 regulated reactive-oxygen-species-mediated Hippo-yes-associated protein (YAP) signaling, which in turn modulated the NLRP3 inflammasome activation. Administration of YAP activator also significantly ablated the lipid accumulation and inhibited the NLRP3 activation in the Nrf2 deletion condition both in vitro and vivo. Overexpression Nrf2 in liver macrophages effectively alleviated steatohepatitis in wild-type mice fed with an HFD . Our data support that by modulating YAP-mediated NLRP3 inflammasome activity, macrophage Nrf2 slows down NASH progression.
    Keywords:  Endocrine System Physiology; Human Metabolism; Immunology; Physiology
    DOI:  https://doi.org/10.1016/j.isci.2021.102427
  7. Front Mol Biosci. 2021 ;8 671908
      Mitochondrial dysfunction is known to be associated with a wide range of human pathologies, such as cancer, metabolic, and cardiovascular diseases. One of the possible ways of mitochondrial involvement in the cellular damage is excessive production of reactive oxygen and nitrogen species (ROS and RNS) that cannot be effectively neutralized by existing antioxidant systems. In mitochondria, ROS and RNS can contribute to protein and mitochondrial DNA (mtDNA) damage causing failure of enzymatic chains and mutations that can impair mitochondrial function. These processes further lead to abnormal cell signaling, premature cell senescence, initiation of inflammation, and apoptosis. Recent studies have identified numerous mtDNA mutations associated with different human pathologies. Some of them result in imbalanced oxidative phosphorylation, while others affect mitochondrial protein synthesis. In this review, we discuss the role of mtDNA mutations in cancer, diabetes, cardiovascular diseases, and atherosclerosis. We provide a list of currently described mtDNA mutations associated with each pathology and discuss the possible future perspective of the research.
    Keywords:  DNA damage; atherosclerosis; cancer; diabetes; mitochondria; reactive nitrogen species; reactive oxygen species
    DOI:  https://doi.org/10.3389/fmolb.2021.671908
  8. Eur J Pharmacol. 2021 May 25. pii: S0014-2999(21)00355-1. [Epub ahead of print] 174202
      Parkinson's disease (PD) is a common neurological disorder worldwide, characterized by loss of dopaminergic neurons and decrease of dopamine content. Mitochondria plays an important role in the development of PD. Adenosine 5'-monophosphate-activated protein kinase (AMPK), glycogen synthase kinase 3 (GSK-3β) and protein phosphatase 2A (PP2A) are all key proteins that regulate mitochondrial metabolism and apoptosis, and they are involved in a variety of neurodegenerative diseases. Here, we aimed to explore the involvement of mitochondrial dysfunction and apoptosis in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP)-induced PD mice and MPP+ iodide-induced PC12 cells. MPTP-induced mice were subjected to behavioral testing to assess PD-like behaviors. Various molecular biological techniques including ELISA, Western blot, TUNEL assay, flow cytometry, and the important instruments Seahorse XF24 Extracellular and high performance liquid chromatography (HPLC), were used to identify the underlying molecular events of mitochondria. Treatment with the AMPK activator GSK621 dramatically ameliorated PD by increasing the levels of dopamine and rescuing the loss of dopaminergic neurons, which is dependent on the mitochondrial pathway. Moreover, regulation of AMPK/GSK-3β/PP2A pathway-related proteins by GSK621 was partially inhibited the development of PD, suggesting a negative feedback loop exists between AMPK action and mitochondrial dysfunction-mediated apoptosis. Our data preliminarily indicated that mitochondrial dysfunction and apoptosis in the pathogenesis of PD might be mediated by AMPK/GSK-3β/PP2A pathway action, which might be a promising new option for future therapy of PD.
    Keywords:  AMPK/GSK-3β/PP2A pathway; Apoptosis; MPTP/MPP(+); Mitochondrial dysfunction; Parkinson’s disease
    DOI:  https://doi.org/10.1016/j.ejphar.2021.174202
  9. FASEB J. 2021 Jun;35(6): e21672
      Strong inflammatory response triggered by the activation of the innate immune system is one typical characteristic of sepsis-associated liver injury (SALI). Guanylate-binding protein 5 (GBP-5) is a component of cell-autonomous immunity and known to be associated with inflammation. Currently, whether GBP-5 participates in SALI and its roles in this disease are yet to be investigated. Using a lipopolysaccharide (LPS)-induced SALI mouse model, we found GBP-5 was highly expressed in LPS-treated mice, and its expression was tightly related to the serum concentrations of live injury markers and inflammatory cytokines, liver damage scores by H&E staining, and amounts of apoptotic hepatocytes by TUNEL staining. Moreover, GBP-5 overexpression was found to aggravate LPS-induced SALI by promoting the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome, then facilitated the production of pro-inflammatory cytokines, eventually induced hepatocyte cell death. Direct transcriptional activation of GBP-5 by basic leucine zipper ATF-like transcription factor (BATF) was identified and further validated. This study unveils a transcriptional upregulation of GBP-5 by interacting with BATF, which promotes the progression of LPS-induced SALI through NLRP3 inflammasome activation, and provides novel therapeutic insights for halting the progression of liver injury in various liver diseases.
    Keywords:  BATF; GBP-5; NLRP3 inflammasome; acute liver injury; inflammation
    DOI:  https://doi.org/10.1096/fj.202100234R
  10. J Biol Chem. 2021 May 21. pii: S0021-9258(21)00622-0. [Epub ahead of print] 100824
      Many enveloped viruses bud from cholesterol-rich lipid rafts on the cell membrane. Depleting cellular cholesterol impedes this process and results in viral particles with reduced viability. Viperin is an ER membrane-associated enzyme that exerts broad-ranging antiviral effects, including inhibiting the budding of some enveloped viruses. However, the relationship between viperin expression and the retarded budding of virus particles from lipid rafts on the cell membrane is unclear. Here, we investigated the effect of viperin expression on cholesterol biosynthesis using transiently expressed genes in the human cell line HEK293T. We found that viperin expression reduces cholesterol levels by 20% - 30% in these cells. Following this observation, a proteomic screen of the viperin interactome identified several cholesterol biosynthetic enzymes among the top hits, including lanosterol synthase (LS) and squalene monooxygenase (MS), which are enzymes that catalyze key steps in establishing the sterol carbon skeleton. Co-immunoprecipitation experiments confirmed that viperin, LS, and SM form a complex at the ER membrane. While co-expression of viperin was found to significantly inhibit the specific activity of LS in HEK293T cell lysates, co-expression of viperin had no effect on the specific activity of SM, although it did reduce SM protein levels by approximately 30%. Despite these inhibitory effects, neither co-expression of LS nor SM was able to reverse the viperin-induced depletion of cellular cholesterol levels, possibly because viperin is highly expressed in transfected HEK293T cells. Our results establish a link between viperin expression and downregulation of cholesterol biosynthesis that helps explain viperin's antiviral effects against enveloped viruses.
    Keywords:  cholesterol regulation; interactome analysis; lanosterol synthase; radical SAM enzyme; squalene monooxygenase; viperin
    DOI:  https://doi.org/10.1016/j.jbc.2021.100824
  11. Eur J Clin Invest. 2021 May 29. e13622
      According to the "multiple-hit" hypothesis, several factors can act simultaneously in non-alcoholic fatty liver disease (NAFLD) progression. Increased nitro-oxidative (nitroso-oxidative) stress may be considered the main contributor involved in the development and risk of NAFLD progression to non-alcoholic steatohepatitis (NASH) characterised by inflammation and fibrosis. Moreover, it has been repeatedly postulated that mitochondrial abnormalities are also closely related to the development and worsening of liver steatosis and NAFLD pathogenesis. However, it is difficult to determine with certainty whether mitochondrial dysfunction or oxidative stress are primary events or a simple consequence of NAFLD development. On the one hand, increasing lipid accumulation in hepatocytes could cause a wide range of effects from mild to severe mitochondrial damages with a negative impact on cell fate. This can start the cascade of events, including an increase of cellular reactive nitrogen species (RNS) and reactive oxygen species (ROS) production that promotes disease progression from simple steatosis to more severe NAFLD stages. On the other hand, progressing mitochondrial bioenergetic catastrophe and oxidative stress manifestation could be considered accompanying events in the vast spectrum of abnormalities observed during the transition from NAFL to NASH and cirrhosis. This review updates our current understanding of NAFLD pathogenesis and clarifies whether mitochondrial dysfunction and ROS/RNS are culprits or bystanders of NAFLD progression.
    Keywords:  NAFLD; NASH; ROS; mitochondria; mitochondrial dysfunction; oxidative stress
    DOI:  https://doi.org/10.1111/eci.13622
  12. Biochem Cell Biol. 2021 May 26. 1-10
      Acute lung injury (ALI) is a severe respiratory disorder with a high rate of mortality, and is characterized by excessive cell apoptosis and inflammation. MicroRNAs (miRNAs) play pivotal roles in ALI. This study examined the biological function of miR-494-3p in cell apoptosis and inflammatory response in ALI. For this, mice were injected with lipopolysaccharide (LPS) to generate an in-vivo model of ALI (ALI mice), and WI-38 cells were stimulated with lipopolysaccharide (LPS) to generate an in-vitro model of ALI. We found that miR-494-3p was significantly downregulated in the ALI mice and in the in-vitro model. Overexpression of miR-494-3p inhibited inflammation and cell apoptosis in the LPS-induced WI-38 cells, and improved the symptoms of lung injury in the ALI mice. We then identified cytidine/uridine monophosphate kinase 2 (CMPK2) as a novel target of miR-494-3p in the WI-38 cells. Furthermore, miR-494-3p suppressed cell apoptosis and the inflammatory response in LPS-treated WI-38 cells through targeting CMPK2. The NLRP3 inflammasome is reportedly responsible for the activation of inflammatory processes. In our study, CMPK2 was confirmed to activate the NLRP3 inflammasome in LPS-treated WI-38 cells. In conclusion, miR-494-3p attenuates ALI through inhibiting cell apoptosis and the inflammatory response by targeting CMPK2, which suggests the value of miR-494-3p as a target for the treatment for ALI.
    Keywords:  CMPK2; NLRP3 inflammasome; acute lung injury; atteinte pulmonaire aiguë; inflammasome NLRP3; miR-494-3p
    DOI:  https://doi.org/10.1139/bcb-2020-0243
  13. Adv Sci (Weinh). 2021 May 27. e2100606
      Mitochondrial antiviral signaling (MAVS) protein is the core signaling adaptor in the RNA signaling pathway. Thus, appropriate regulation of MAVS expression is essential for antiviral immunity against RNA virus infection. However, the regulation of MAVS expression at the mRNA level especially at the post transcriptional level is not well-defined. Here, it is reported that the MAVS mRNA undergoes N6 -methyladenosine (m6 A) modification through methyltransferase-like protein 14 (METTL14), which leads to a fast turnover of MAVS mRNA. Knockdown or deficiency of METTL14 increases MAVS mRNA stability, and downstream phosphorylation of TBK1/IRF3 and interferon-β production in response to RNA viruses. Compared to wild-type mice, heterozygotes Mettl14+/- mice better tolerate RNA virus infection. The authors' findings unveil a novel mechanism to regulate the stability of MAVS transcripts post-transcriptionally through m6 A modification.
    Keywords:  N6-methyladenosine modification; antiviral immunity; mRNA stability; methyltransferase-like protein 14; mitochondrial antiviral signaling protein
    DOI:  https://doi.org/10.1002/advs.202100606
  14. Blood Adv. 2021 05 25. 5(10): 2490-2504
      Mammalian red blood cells (RBCs), which primarily contain hemoglobin, exemplify an elaborate maturation process, with the terminal steps of RBC generation involving extensive cellular remodeling. This encompasses alterations of cellular content through distinct stages of erythroblast maturation that result in the expulsion of the nucleus (enucleation) followed by the loss of mitochondria and all other organelles and a transition to anaerobic glycolysis. Whether there is any link between erythroid removal of the nucleus and the function of any other organelle, including mitochondria, remains unknown. Here we demonstrate that mitochondria are key to nuclear clearance. Using live and confocal microscopy and high-throughput single-cell imaging, we show that before nuclear polarization, mitochondria progressively move toward one side of maturing erythroblasts and aggregate near the nucleus as it extrudes from the cell, a prerequisite for enucleation to proceed. Although we found active mitochondrial respiration is required for nuclear expulsion, levels of mitochondrial activity identify distinct functional subpopulations, because terminally maturing erythroblasts with low relative to high mitochondrial membrane potential are at a later stage of maturation, contain greatly condensed nuclei with reduced open chromatin-associated acetylation histone marks, and exhibit higher enucleation rates. Lastly, to our surprise, we found that late-stage erythroblasts sustain mitochondrial metabolism and subsequent enucleation, primarily through pyruvate but independent of in situ glycolysis. These findings demonstrate the critical but unanticipated functions of mitochondria during the erythroblast enucleation process. They are also relevant to the in vitro production of RBCs as well as to disorders of the erythroid lineage.
    DOI:  https://doi.org/10.1182/bloodadvances.2021004259
  15. Sci Adv. 2021 May;pii: eabe7548. [Epub ahead of print]7(22):
      Mitochondrial dysfunction is a key driver of inflammatory responses in human disease. However, it remains unclear whether alterations in mitochondria-innate immune cross-talk contribute to the pathobiology of mitochondrial disorders and aging. Using the polymerase gamma (POLG) mutator model of mitochondrial DNA instability, we report that aberrant activation of the type I interferon (IFN-I) innate immune axis potentiates immunometabolic dysfunction, reduces health span, and accelerates aging in mutator mice. Mechanistically, elevated IFN-I signaling suppresses activation of nuclear factor erythroid 2-related factor 2 (NRF2), which increases oxidative stress, enhances proinflammatory cytokine responses, and accelerates metabolic dysfunction. Ablation of IFN-I signaling attenuates hyperinflammatory phenotypes by restoring NRF2 activity and reducing aerobic glycolysis, which combine to lessen cardiovascular and myeloid dysfunction in aged mutator mice. These findings further advance our knowledge of how mitochondrial dysfunction shapes innate immune responses and provide a framework for understanding mitochondria-driven immunopathology in POLG-related disorders and aging.
    DOI:  https://doi.org/10.1126/sciadv.abe7548
  16. Front Cardiovasc Med. 2021 ;8 650278
      Heart failure (HF) patients often suffer from multiple comorbidities, such as diabetes, atrial fibrillation, depression, chronic obstructive pulmonary disease, and chronic kidney disease. The coexistance of comorbidities usually leads to multi morbidity and poor prognosis. Treatments for HF patients with multi morbidity are still an unmet clinical need, and finding an effective therapy strategy is of great value. HF can lead to comorbidity, and in return, comorbidity may promote the progression of HF, creating a vicious cycle. This reciprocal correlation indicates there may be some common causes and biological mechanisms. Metabolism remodeling and chronic inflammation play a vital role in the pathophysiological processes of HF and comorbidities, indicating metabolism and inflammation may be the links between HF and comorbidities. In this review, we comprehensively discuss the major underlying mechanisms and therapeutic implications for comorbidities of HF. We first summarize the potential role of metabolism and inflammation in HF. Then, we give an overview of the linkage between common comorbidities and HF, from the perspective of epidemiological evidence to the underlying metabolism and inflammation mechanisms. Moreover, with the help of bioinformatics, we summarize the shared risk factors, signal pathways, and therapeutic targets between HF and comorbidities. Metabolic syndrome, aging, deleterious lifestyles (sedentary behavior, poor dietary patterns, smoking, etc.), and other risk factors common to HF and comorbidities are all associated with common mechanisms. Impaired mitochondrial biogenesis, autophagy, insulin resistance, and oxidative stress, are among the major mechanisms of both HF and comorbidities. Gene enrichment analysis showed the PI3K/AKT pathway may probably play a central role in multi morbidity. Additionally, drug targets common to HF and several common comorbidities were found by network analysis. Such analysis has already been instrumental in drug repurposing to treat HF and comorbidity. And the result suggests sodium-glucose transporter-2 (SGLT-2) inhibitors, IL-1β inhibitors, and metformin may be promising drugs for repurposing to treat multi morbidity. We propose that targeting the metabolic and inflammatory pathways that are common to HF and comorbidities may provide a promising therapeutic strategy.
    Keywords:  chronic inflammation; comorbidities; heart failure; metabolism; mitochondria; reactive oxygen species
    DOI:  https://doi.org/10.3389/fcvm.2021.650278
  17. Prog Mol Subcell Biol. 2021 ;59 279-303
      The unfolded protein response (UPR) is an evolutionarily conserved adaptive regulatory pathway that alleviates protein-folding defects in the endoplasmic reticulum (ER). Physiological demands, environmental perturbations and pathological conditions can cause accumulation of unfolded proteins in the ER and the stress signal is transmitted to the nucleus to turn on a series of genes to respond the challenge. In metazoan, the UPR pathways consisted of IRE1/XBP1, PEK-1 and ATF6, which function in parallel and downstream transcriptional activation triggers the proteostasis networks consisting of molecular chaperones, protein degradation machinery and other stress response pathways ((Labbadia J, Morimoto RI, F1000Prime Rep 6:7, 2014); (Shen X, Ellis RE, Lee K, Annu Rev Biochem 28:893-903, 2014)). The integrated responses act on to resolve the ER stress by increasing protein folding capacity, attenuating ER-loading translation, activating ER-associated proteasomal degradation (ERAD), and regulating IRE1-dependent decay of mRNA (RIDD). Therefore, the effective UPR to internal and external causes is linked to the multiple pathophysiological conditions such as aging, immunity, and neurodegenerative diseases. Recent development in the research of the UPR includes cell-nonautonomous features of the UPR, interplay between the UPR and other stress response pathways, unconventional UPR inducers, and noncanonical UPR independent of the three major branches, originated from multiple cellular and molecular machineries in addition to ER. Caenorhabditis elegans model system has critically contributed to these unprecedented aspects of the ER UPR and broadens the possible therapeutic targets to treat the ER-stress associated human disorders and time-dependent physiological deterioration of aging.
    Keywords:  Aging; Caenorhabditis elegans; ER homeostasis; Proteostasis; Unfolded protein response
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_13
  18. Mol Biol Rep. 2021 May 22.
      Diabetes mellitus (DM) is a chronic, metabolic condition characterized by excessive blood glucose that causes perturbations in physiological functioning of almost all the organs of human body. This devastating metabolic disease has its implications in cognitive decline, heart damage, renal, retinal and neuronal complications that severely affects quality of life and associated with decreased life expectancy. Mitochondria possess adaptive mechanisms to meet the cellular energy demand and combat cellular stress. In recent years mitochondrial homeostasis has been point of focus where several mechanisms regulating mitochondrial health and function are evaluated. Mitochondrial dynamics plays crucial role in maintaining healthy mitochondria in cell under physiological as well as stress condition. Mitochondrial dynamics and corresponding regulating mechanisms have been implicated in progression of metabolic disorders including diabetes and its complications. In current review we have discussed about role of mitochondrial dynamics under physiological and pathological conditions. Also, modulation of mitochondrial fission and fusion in diabetic complications are described. The available literature supports mitochondrial remodelling as reliable target for diabetic complications.
    Keywords:  Diabetic complications; Mitochondria; Mitochondrial dynamics; Mitochondrial fission; Mitochondrial fusion; Mitochondrial morphology
    DOI:  https://doi.org/10.1007/s11033-021-06408-8
  19. Cell. 2021 May 27. pii: S0092-8674(21)00530-4. [Epub ahead of print]184(11): 2896-2910.e13
      Damaged mitochondria need to be cleared to maintain the quality of the mitochondrial pool. Here, we report mitocytosis, a migrasome-mediated mitochondrial quality-control process. We found that, upon exposure to mild mitochondrial stresses, damaged mitochondria are transported into migrasomes and subsequently disposed of from migrating cells. Mechanistically, mitocytosis requires positioning of damaged mitochondria at the cell periphery, which occurs because damaged mitochondria avoid binding to inward motor proteins. Functionally, mitocytosis plays an important role in maintaining mitochondrial quality. Enhanced mitocytosis protects cells from mitochondrial stressor-induced loss of mitochondrial membrane potential (MMP) and mitochondrial respiration; conversely, blocking mitocytosis causes loss of MMP and mitochondrial respiration under normal conditions. Physiologically, we demonstrate that mitocytosis is required for maintaining MMP and viability in neutrophils in vivo. We propose that mitocytosis is an important mitochondrial quality-control process in migrating cells, which couples mitochondrial homeostasis with cell migration.
    Keywords:  migrasome; mitochondrial quality control; mitochondrion; mitocytosis; mitosome
    DOI:  https://doi.org/10.1016/j.cell.2021.04.027
  20. Neurobiol Dis. 2021 May 25. pii: S0969-9961(21)00154-6. [Epub ahead of print] 105405
      The retina is a highly active metabolic organ that displays a particular vulnerability to genetic and environmental factors causing stress and homeostatic imbalance. Mitochondria constitute a bioenergetic hub that coordinates stress response and cellular homeostasis, therefore structural and functional regulation of the mitochondrial dynamic network is essential for the mammalian retina. CERKL (ceramide kinase like) is a retinal degeneration gene whose mutations cause Retinitis Pigmentosa in humans, a visual disorder characterized by photoreceptors neurodegeneration and progressive vision loss. CERKL produces multiple isoforms with a dynamic subcellular localization. Here we show that a pool of CERKL isoforms localizes at mitochondria in mouse retinal ganglion cells. The depletion of CERKL levels in CerklKD/KO(knockdown/knockout) mouse retinas cause increase of autophagy, mitochondrial fragmentation, alteration of mitochondrial distribution, and dysfunction of mitochondrial-dependent bioenergetics and metabolism. Our results support CERKL as a regulator of autophagy and mitochondrial biology in the mammalian retina.
    Keywords:  CERKL; Mitochondrial dysfunction; Retinal dystrophies; Retinitis pigmentosa
    DOI:  https://doi.org/10.1016/j.nbd.2021.105405
  21. Autophagy. 2021 May 24. 1-23
      Parkinson disease (PD)-affected brains show consistent endoplasmic reticulum (ER) stress and mitophagic dysfunctions. The mechanisms underlying these perturbations and how they are directly linked remain a matter of questions. XBP1 is a transcription factor activated upon ER stress after unconventional splicing by the nuclease ERN1/IREα thereby yielding XBP1s, whereas PINK1 is a kinase considered as the sensor of mitochondrial physiology and a master gatekeeper of mitophagy process. We showed that XBP1s transactivates PINK1 in human cells, primary cultured neurons and mice brain, and triggered a pro-mitophagic phenotype that was fully dependent of endogenous PINK1. We also unraveled a PINK1-dependent phosphorylation of XBP1s that conditioned its nuclear localization and thereby, governed its transcriptional activity. PINK1-induced XBP1s phosphorylation occurred at residues reminiscent of, and correlated to, those phosphorylated in substantia nigra of sporadic PD-affected brains. Overall, our study delineated a functional loop between XBP1s and PINK1 governing mitophagy that was disrupted in PD condition.Abbreviations: 6OHDA: 6-hydroxydopamine; baf: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CCCP: carbonyl cyanide chlorophenylhydrazone; COX8A: cytochrome c oxidase subunit 8A; DDIT3/CHOP: DNA damage inducible transcript 3; EGFP: enhanced green fluorescent protein; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FACS: fluorescence-activated cell sorting; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MFN2: mitofusin 2; OPTN: optineurin; PD: Parkinson disease; PINK1: PTEN-induced kinase 1; PCR: polymerase chain reaction:; PRKN: parkin RBR E3 ubiquitin protein ligase; XBP1s [p-S61A]: XBP1s phosphorylated at serine 61; XBP1s [p-T48A]: XBP1s phosphorylated at threonine 48; shRNA: short hairpin RNA, SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TM: tunicamycin; TMRM: tetramethyl rhodamine methylester; TOMM20: translocase of outer mitochondrial membrane 20; Toy: toyocamycin; TP: thapsigargin; UB: ubiquitin; UB (S65): ubiquitin phosphorylated at serine 65; UPR: unfolded protein response, XBP1: X-box binding protein 1; XBP1s: spliced X-box binding protein 1.
    Keywords:  Mitophagy; PINK1; Parkinson disease; XBP1; phosphorylation; transcription; unfolded protein response
    DOI:  https://doi.org/10.1080/15548627.2021.1917129
  22. Front Oncol. 2021 ;11 672781
      Mitochondria are vital organelles in cells, regulating energy metabolism and apoptosis. Mitochondrial transcellular transfer plays a crucial role during physiological and pathological conditions, such as rescuing recipient cells from bioenergetic deficit and tumorigenesis. Studies have shown several structures that conduct transcellular transfer of mitochondria, including tunneling nanotubes (TNTs), extracellular vesicles (EVs), and Cx43 gap junctions (GJs). The intra- and intercellular transfer of mitochondria is driven by a transport complex. Mitochondrial Rho small GTPase (MIRO) may be the adaptor that connects the transport complex with mitochondria, and myosin XIX is the motor protein of the transport complex, which participates in the transcellular transport of mitochondria through TNTs. In this review, the roles of TNTs, EVs, GJs, and related transport complexes in mitochondrial transcellular transfer are discussed in detail, as well as the formation mechanisms of TNTs and EVs. This review provides the basis for the development of potential clinical therapies targeting the structures of mitochondrial transcellular transfer.
    Keywords:  Cx43 gap junction; Miro; extracellular vesicles; mitochondria; myosin XIX; transcellular transport; tunneling nanotubes
    DOI:  https://doi.org/10.3389/fonc.2021.672781
  23. Bioeng Transl Med. 2021 May;6(2): e10209
      Carbon tetrachloride (CCl4)-induced liver injury is predominantly caused by free radicals, in which mitochondrial function of hepatocytes is impaired, accompanying with the production of ROS and decreased ATP energy supply in animals intoxicated with CCl4. Here we explored a novel therapeutic approach, mitochondrial transplantation therapy, for treating the liver injury. The results showed that mitochondria entered hepatocytes through macropinocytosis pathway, and thereby cell viability was recovered in a concentration-dependent manner. Mitochondrial therapy could increase ATP supply and reduce free radical damage. In liver injury model of mice, mitochondrial therapy significantly improved liver function and prevented tissue fibrogenesis. Transcriptomic data revealed that mitochondrial unfold protein response (UPRmt), a protective transcriptional response of mitochondria-to-nuclear retrograde signaling, would be triggered after mitochondrial administration. Then the anti-oxidant genes were up-regulated to scavenge free radicals. The mitochondrial function was rehabilitated through the transcriptional activation of respiratory chain enzyme and mitophage-associated genes. The protective response re-balanced the cellular homeostasis, and eventually enhanced stress resistance that is linked to cell survival. The efficacy of mitochondrial transplantation therapy in the animals would suggest a novel approach for treating liver injury caused by toxins.
    Keywords:  UPRmt; energy supply; free radical; mitochondrial therapy
    DOI:  https://doi.org/10.1002/btm2.10209
  24. Sci Rep. 2021 May 27. 11(1): 11185
      The human mitochondrial ClpXP protease complex (HsClpXP) has recently attracted major attention as a target for novel anti-cancer therapies. Despite its important role in disease progression, the cellular role of HsClpXP is poorly characterized and only few small molecule inhibitors have been reported. Herein, we screened previously established S. aureus ClpXP inhibitors against the related human protease complex and identified potent small molecules against human ClpXP. The hit compounds showed anti-cancer activity in a panoply of leukemia, liver and breast cancer cell lines. We found that the bacterial ClpXP inhibitor 334 impairs the electron transport chain (ETC), enhances the production of mitochondrial reactive oxygen species (mtROS) and thereby promotes protein carbonylation, aberrant proteostasis and apoptosis. In addition, 334 induces cell death in re-isolated patient-derived xenograft (PDX) leukemia cells, potentiates the effect of DNA-damaging cytostatics and re-sensitizes resistant cancers to chemotherapy in non-apoptotic doses.
    DOI:  https://doi.org/10.1038/s41598-021-90801-7
  25. Sci Rep. 2021 May 25. 11(1): 10925
      The activation of mitochondrial large conductance calcium-activated potassium (mitoBKCa) channels increases cell survival during ischemia/reperfusion injury of cardiac cells. The basic biophysical and pharmacological properties of mitoBKCa correspond to the properties of the BKCa channels from the plasma membrane. It has been suggested that the VEDEC splice variant of the KCNMA1 gene product encoding plasma membrane BKCa is targeted toward mitochondria. However there has been no direct evidence that this protein forms a functional channel in mitochondria. In our study, we used HEK293T cells to express the VEDEC splice variant and observed channel activity in mitochondria using the mitoplast patch-clamp technique. For the first time, we found that transient expression with the VEDEC isoform resulted in channel activity with the conductance of 290 ± 3 pS. The channel was voltage-dependent and activated by calcium ions. Moreover, the activity of the channel was stimulated by the potassium channel opener NS11021 and inhibited by hemin and paxilline, which are known BKCa channel blockers. Immunofluorescence experiments confirmed the partial colocalization of the channel within the mitochondria. From these results, we conclude that the VEDEC isoform of the BKCa channel forms a functional channel in the inner mitochondrial membrane. Additionally, our data show that HEK293T cells are a promising experimental model for expression and electrophysiological studies of mitochondrial potassium channels.
    DOI:  https://doi.org/10.1038/s41598-021-90465-3
  26. Front Immunol. 2021 ;12 680068
      Toll-like receptors (TLRs) play critical roles in regulating the abnormal activation of the immune cells resulting in the pathogenesis of inflammation and autoimmune diseases. Pyruvate kinase M2 (PKM2), which governs the last step of glycolysis, is involved in multiple cellular processes and pathological conditions. However, little is known about the involvement of PKM2 in regulating TLR-mediated inflammation and autoimmunity. Herein, we investigated the role of PKM2 in the activation of the TLR pathways and the pathogenesis of inflammation and autoimmune diseases. The activation of TLR4, TLR7 and TLR9 pathways was found to induce the up-regulation of PKM2 expression in macrophages, dendritic cells (DCs) and B cells. The over-expression of PKM2 promotes the activation of TLR4, TLR7 and TLR9 pathways while interference with the PKM2 expression or the addition of the PKM2 inhibitor (PKM-IN) markedly inhibited the activation of TLR4, TLR7 and TLR9 pathways. Mechanistically, PKM2 augmented the activation of TLR4, TLR7 and TLR9 pathways by promoting the activation of the proline-rich tyrosine kinase 2 (Pyk2). Intriguingly, the PKM2 inhibitor PKM2-IN significantly protected the mice from the endotoxic shock mediated by the TLR4-agonist LPS. Additionally, it alleviated the progression in the TLR7-agonist imiquimod-mediated lupus mice and spontaneous lupus MRL/lpr mice. Moreover, PKM2 expression was highly elevated in the monocytes, DCs and B cells from systemic lupus erythematous (SLE) patients compared with those from the healthy donors. Besides, the PKM2 expression level was positively correlated with the degree of activation of these immune cells. In summary, PKM2 contributed to TLR-mediated inflammation and autoimmunity and can be a valuable target to control inflammation and autoimmunity.
    Keywords:  PKM2; Pyk2; TLR; autoimmunity; inflammation
    DOI:  https://doi.org/10.3389/fimmu.2021.680068
  27. J Immunol. 2021 May 24. pii: ji2000978. [Epub ahead of print]
      Low-grade inflammatory monocytes critically contribute to the pathogenesis of chronic inflammatory diseases such as atherosclerosis. The elevated expression of coactivating molecule CD40 as well as key adhesion molecule CD11a is a critical signature of inflammatory monocytes from both human patients with coronary artery diseases as well as in animal models of atherosclerosis. In this study, we report that subclinical superlow-dose LPS, a key risk factor for low-grade inflammation and atherosclerosis, can potently trigger the induction of CD40 and CD11a on low-grade inflammatory monocytes. Subclinical endotoxin-derived monocytes demonstrate immune-enhancing effects and suppress the generation of regulatory CD8+CD122+ T cells, which further exacerbate the inflammatory environment conducive for chronic diseases. Mechanistically, subclinical endotoxemia activates TRAM-mediated signaling processes, leading to the activation of MAPK and STAT5, which is responsible for the expression of CD40 and CD11a. We also demonstrate that TRAM-mediated monocyte polarization can be suppressed by IRAK-M. IRAK-M-deficient monocytes have increased expression of TRAM, elevated induction of CD40 and CD11a by subclinical-dose endotoxin, and are more potent in suppressing the CD8 regulatory T cells. Mice with IRAK-M deficiency generate an increased population of inflammatory monocytes and a reduced population of CD8 T regulatory cells. In contrast, mice with TRAM deficiency exhibit a significantly reduced inflammatory monocyte population and an elevated CD8 T regulatory cell population. Together, our data reveal a competing intracellular circuitry involving TRAM and IRAK-M that modulate the polarization of low-grade inflammatory monocytes with an immune-enhancing function.
    DOI:  https://doi.org/10.4049/jimmunol.2000978
  28. eNeuro. 2021 May 21. pii: ENEURO.0360-20.2021. [Epub ahead of print]
      The long cellular architecture of neurons requires regulation in part through transport and anchoring events to distribute intracellular organelles. During development, cellular and sub-cellular events such as organelle additions and their recruitment at specific sites on the growing axons occur over different time scales and often show inter-animal variability thus making it difficult to identify specific phenomena in population averages. To measure the variability in sub-cellular events such as organelle positions, we developed a microfluidic device to feed and immobilize C. elegans for high-resolution imaging over several days. The microfluidic device enabled long-term imaging of individual animals and allowed us to investigate organelle density using mitochondria as a testbed in a growing neuronal process in vivo Sub-cellular imaging of an individual neuron in multiple animals, over 36 hours in our microfluidic device, shows the addition of new mitochondria along the neuronal process and an increase in the accumulation of synaptic vesicles at synapses. Long-term imaging of individual C. elegans touch receptor neurons shows that the addition of new mitochondria takes place along the entire neuronal process length at a rate of ∼0.6 mitochondria per hour. The threshold for the addition of a new mitochondrion occurs when the average separation between the two pre-existing mitochondria exceeds 24 µm. Our assay provides a new opportunity to move beyond simple observations obtained from in vitro assays to allow the discovery of genes that regulate positioning of mitochondria in neurons.Significance StatementAxonal transport of mitochondria is required for the normal function and health of a developing animal with continuously growing axonal processes. Existing technologies are unable to monitor the addition of a new mitochondrion in a growing axon in vivo, as it requires continuous or intermittent tracking of the same individual neuron over several hours to days. We have developed a microfluidic device that enables long-term high-resolution imaging of individual C. elegans in an anesthetic-free setting. Using this device, we observe that the addition of a new mitochondrion can occur anywhere along the entire neuronal process, likely mediated by actively transported mitochondria, and at docking sites that occur with high probability when the separation between adjacent mitochondria crosses 24 µm threshold.
    Keywords:  C. elegans; development; intermitochondrial distances; long-term imaging; microfluidic device; mitochondria; touch receptor neurons
    DOI:  https://doi.org/10.1523/ENEURO.0360-20.2021
  29. Cytokine. 2021 May 22. pii: S1043-4666(21)00164-2. [Epub ahead of print]144 155581
      Lactobacilli are abundant in the intestinal tract where they constantly regulate immune system via interacting with a great diversity of immune cells, such as dendritic cells (DCs). Notably, DCs are powerful antigen-presenting cells and they are capable of initiating primary immune responses. In this study, we studied the effects of Lactobacillus johnsonii (L. johnsonii) and Lactobacillus johnsonii cell-free supernatant (L. johnsonii-CFS) on the activation of porcine monocyte-derived dendritic cells (MoDCs) and their regulation of Th cellular immune responses in vitro. The MoDCs generated from porcine peripheral blood monocytes were stimulated by L. johnsonii and L. johnsonii-CFS, respectively. Pre-incubation with L. johnsonii increased expression of CD172a, CD80, major histocompatibility complex class II (MHCII) in MoDCs, and enhanced the ability of MoDCs to induce the proliferation of CD4+ T cell, while pre-incubation with L. johnsonii-CFS merely upregulated the expression of MHCII. Analysis of the cytokines showed that L. johnsonii stimulated up-regulation of Th1-type cytokines (IL-12p40, IFN-γ, TNF-α), pro-inflammatory cytokine IL-1β, chemokine CCL20, and Treg-type / anti-inflammatory cytokines IL-10 in MoDCs. Notably, a high production of IL-10 was observed in the MoDCs treated with L. johnsonii-CFS, indicating L. johnsonii-CFS exerted anti-inflammatory effects. Furthermore, L. johnsonii induced up-regulation of TLR2 and TLR6, but L. johnsonii-CFS not. Moreover, MoDCs stimulated by L. johnsonii mainly promoted T cell differentiate into Th1/Th2/Treg cells and plays an important role in improving the balance between Th1/Th2/Treg-type cells, whereas MoDCs stimulated by L. johnsonii-CFS mainly directed T cell to Th2/Treg subset polarization. In conclusion, L. johnsonii and L. johnsonii-CFS exhibited the ability of modulating innate immunity by regulating immunological functions of MoDCs in vitro, suggesting their potential ability to use as microecological preparations and medicines.
    Keywords:  Cytokine; Lactobacillus johnsonii (L. johnsonii); Lactobacillus johnsonii cell-free supernatant (L. johnsonii-CFS); Monocyte-derived dendritic cells (MoDCs); Surface markers; TLRs
    DOI:  https://doi.org/10.1016/j.cyto.2021.155581
  30. Sci Rep. 2021 May 26. 11(1): 10969
      Altered function of mitochondrial respiratory chain in brain cells is related to many neurodegenerative diseases. NADH Dehydrogenase (Ubiquinone) Fe-S protein 4 (Ndufs4) is one of the subunits of mitochondrial complex I and its mutation in human is associated with Leigh syndrome. However, the molecular biological role of Ndufs4 in neuronal function is poorly understood. In this study, upon Ndufs4 expression confirmation in NeuN-positive neurons, and GFAP-positive astrocytes in WT mouse hippocampus, we found significant decrease of mitochondrial respiration in Ndufs4-KO mouse hippocampus. Although there was no change in the number of NeuN positive neurons in Ndufs4-KO hippocampus, the expression of synaptophysin, a presynaptic protein, was significantly decreased. To investigate the detailed mechanism, we silenced Ndufs4 in Neuro-2a cells and we observed shorter neurite lengths with decreased expression of synaptophysin. Furthermore, western blot analysis for phosphorylated extracellular regulated kinase (pERK) revealed that Ndufs4 silencing decreases the activity of ERK signalling. These results suggest that Ndufs4-modulated mitochondrial activity may be involved in neuroplasticity via regulating synaptophysin expression.
    DOI:  https://doi.org/10.1038/s41598-021-90127-4
  31. Prog Mol Subcell Biol. 2021 ;59 145-162
      The endoplasmic reticulum (ER) is an organelle that mediates the proper folding and assembly of proteins destined for the cell surface, the extracellular space and subcellular compartments such as the lysosomes. The ER contains a wide range of molecular chaperones to handle the folding requirements of a diverse set of proteins that traffic through this compartment. The lectin-like chaperones calreticulin and calnexin are an important class of structurally-related chaperones relevant for the folding and assembly of many N-linked glycoproteins. Despite the conserved mechanism of action of these two chaperones in nascent protein recognition and folding, calreticulin has unique functions in cellular calcium signaling and in the immune response. The ER-related functions of calreticulin in the assembly of major histocompatibility complex (MHC) class I molecules are well-studied and provide many insights into the modes of substrate and co-chaperone recognition by calreticulin. Calreticulin is also detectable on the cell surface under some conditions, where it induces the phagocytosis of apoptotic cells. Furthermore, mutations of calreticulin induce cell transformation in myeloproliferative neoplasms (MPN). Studies of the functions of the mutant calreticulin in cell transformation and immunity have provided many insights into the normal biology of calreticulin, which are discussed.
    Keywords:  Calcium signaling; Calnexin; Calreticulin; Major Histocompatibility Complex (MHC) class I; Myeloproliferative neoplasms; PDIA3; Phagocytosis of apoptotic cells
    DOI:  https://doi.org/10.1007/978-3-030-67696-4_7
  32. J Gastroenterol Hepatol. 2021 May 28.
      Pyroptosis is a type of programmed cell death mediated by a multiprotein complex called the inflammasome through the pro-inflammatory activity of gasdermin-D.
    AIM: To recognize the final biological product that leads to pore formation in the cell membrane, lysis, pro-inflammatory cytokines release, and the establishment of an immune response.
    METHODS: An exhaustive search engine investigation of an elevated immune response can induce a sustained inflammation that directly links this mechanism to non-alcoholic fatty liver disease and its progression to non-alcoholic steatohepatitis.
    RESULTS: Clinical studies and systematic reviews suggest that gasdermin-D is a critical molecule between the immune response and the disease manifestation, which could be considered a therapeutic target for highly prevalent diseases characterized by presenting perpetuated inflammatory processes.
    CONCLUSION: Both basic and clinical research show evidence on the expression and regulation of the inflammasome-gasdermina-D-piroptosis trinomial for the progression of nonalcoholic fatty liver disease to nonalcoholic steatohepatitis.
    Keywords:  Gasdermin-D; Inflammasome; non-alcoholic fatty liver disease; pyroptosis
    DOI:  https://doi.org/10.1111/jgh.15561
  33. Gut Microbes. 2021 Jan-Dec;13(1):13(1): 1-19
      The gut bacterium Akkermansia muciniphila has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity, diabetes, and metabolicdysfunction-associated fatty liver disease (MAFLD). However, its underlying mechanism involved in its well-known metabolic actions needs further evaluation. The present study explored the therapeutic effect and mechanism of A. muciniphila in intervening MAFLD by using a high-fat and high-cholesterol (HFC) diet induced obese mice model. Mice treated with A. muciniphila efficiently reversed MAFLD in the liver, such as hepatic steatosis, inflammatory, and liver injury. These therapeutic effects persisted after long-term drug withdrawal and were slightly weakened in the antibiotics-treated obese mice. A. muciniphila treatment efficiently increased mitochondrial oxidation and bile acid metabolism in the gut-liver axis, ameliorated oxidative stress-induced cell apoptosis in gut, leading to the reshaping of the gut microbiota composition. These metabolic improvements occurred with increased L-aspartate levels in the liver that transported from the gut. The administration of L-aspartate in vitro or in mice displayed the similar beneficial metabolic effects mentioned above and efficiently ameliorated MAFLD. Together, these data indicate that the anti-MAFLD activity of A. muciniphila correlated with lipid oxidation and improved gut-liver interactions through regulating the metabolism of L-aspartate. A. muciniphila could be a potential agent for clinical intervention in MAFLD.
    Keywords:  Akkermansia muciniphila; L-aspartate; Metabolic-dysfunction associated fatty liver disease (MAFLD); bile acid metabolism; gut-liver axis; lipid oxidation
    DOI:  https://doi.org/10.1080/19490976.2021.1927633
  34. J Cell Sci. 2022 Mar 01. pii: jcs256206. [Epub ahead of print]135(5):
      Lipid droplets (LDs) are globular subcellular structures that store neutral lipids. LDs are closely associated with the endoplasmic reticulum (ER) and are limited by a phospholipid monolayer harboring a specific set of proteins. Most of these proteins associate with LDs through either an amphipathic helix or a membrane-embedded hairpin motif. Here, we address the question of whether integral membrane proteins can localize to the surface of LDs. To test this, we fused perilipin 3 (PLIN3), a mammalian LD-targeted protein, to ER-resident proteins. The resulting fusion proteins localized to the periphery of LDs in both yeast and mammalian cells. This peripheral LD localization of the fusion proteins, however, was due to a redistribution of the ER around LDs, as revealed by bimolecular fluorescence complementation between ER- and LD-localized partners. A LD-tethering function of PLIN3-containing membrane proteins was confirmed by fusing PLIN3 to the cytoplasmic domain of an outer mitochondrial membrane protein, OM14. Expression of OM14-PLIN3 induced a close apposition between LDs and mitochondria. These data indicate that the ER-LD junction constitutes a barrier for ER-resident integral membrane proteins.
    Keywords:   Saccharomyces cerevisiae ; Endoplasmic reticulum; Lipid droplets; Perilipins; Seipin; Steryl esters; Triacylglycerols
    DOI:  https://doi.org/10.1242/jcs.256206
  35. J Cell Biol. 2021 Aug 02. pii: e202009092. [Epub ahead of print]220(8):
      Mitophagy is the degradation of surplus or damaged mitochondria by autophagy. In addition to programmed and stress-induced mitophagy, basal mitophagy processes exert organelle quality control. Here, we show that the sorting and assembly machinery (SAM) complex protein SAMM50 interacts directly with ATG8 family proteins and p62/SQSTM1 to act as a receptor for a basal mitophagy of components of the SAM and mitochondrial contact site and cristae organizing system (MICOS) complexes. SAMM50 regulates mitochondrial architecture by controlling formation and assembly of the MICOS complex decisive for normal cristae morphology and exerts quality control of MICOS components. To this end, SAMM50 recruits ATG8 family proteins through a canonical LIR motif and interacts with p62/SQSTM1 to mediate basal mitophagy of SAM and MICOS components. Upon metabolic switch to oxidative phosphorylation, SAMM50 and p62 cooperate to mediate efficient mitophagy.
    DOI:  https://doi.org/10.1083/jcb.202009092
  36. Food Funct. 2021 May 28.
      Obesity is closely associated with maintaining mitochondrial homeostasis, and mitochondrial dysfunction can lead to systemic lipid metabolism disorders. Zeaxanthin (ZEA) is a kind of carotenoid with potent antioxidant activity and has been reported to promote mitochondrial biogenesis. Nevertheless, the molecular mechanism has not been explained. In this study, we first discovered that ZEA stimulated 3T3-L1 adipocyte browning by increasing the expression of specific markers (Cd137, Tbx1, Sirt1, Cidea, Ucp1, Tmem26, and Cited1), thereby reducing lipid accumulation. Besides, ZEA promoted mitochondrial biogenesis by increasing the expression of PRDM16, UCP1, NRF2, PGC-1α, and SIRT1. Moreover, the uncoupled oxygen consumption rate (OCR) of protons leaked in 3T3-L1 adipocytes was rapidly increased by ZEA treatment, which improved mitochondrial respiration and energy metabolism. Furthermore, we found that ZEA promotes browning by enhancing mitochondrial biogenesis partly through the protein kinase A (PKA) pathway. This study provided new insight into the promotion of browning and mitochondrial biogenesis by ZEA, suggesting that ZEA probably has potential therapeutic effects on obesity.
    DOI:  https://doi.org/10.1039/d1fo00524c
  37. Sci Rep. 2021 May 24. 11(1): 10753
      Disruption of iron metabolism is closely related to metabolic diseases. Iron deficiency is frequently associated with obesity and hepatic steatosis. However, the effects of iron supplementation on obesity and energy metabolism remain unclear. Here we show that a high-fat diet supplemented with iron reduces body weight gain and hepatic lipid accumulation in mice. Iron supplementation was found to reduce mitochondrial morphological abnormalities and upregulate gene transcription involved in mitochondrial function and beta oxidation in the liver and skeletal muscle. In both these tissues, iron supplementation increased the expression of genes involved in heme or iron-sulfur (Fe-S) cluster synthesis. Heme and Fe-S cluster, which are iron prosthetic groups contained in electron transport chain complex subunits, are essential for mitochondrial respiration. The findings of this study demonstrated that iron regulates mitochondrial signaling pathways-gene transcription of mitochondrial component molecules synthesis and their energy metabolism. Overall, the study elucidates the molecular basis underlying the relationship between iron supplementation and obesity and hepatic steatosis progression, and the role of iron as a signaling molecule.
    DOI:  https://doi.org/10.1038/s41598-021-89673-8
  38. Eur J Pharmacol. 2021 May 23. pii: S0014-2999(21)00351-4. [Epub ahead of print] 174198
      CD39 is associated with diverse physiological and pathological processes, including cell proliferation and differentiation. Adenosine triphosphate (ATP) is hydrolysed to adenosine by different enzymes including ecto-nucleoside triphosphate diphosphohydrolase-1/ENTPD1 (CD39) and ecto-5'-nucleotidase (CD73), regulating many physiological and pathological processes in various diseases, but these changes and functions in alcoholic liver disease are generally unknown. In this study, an alcoholic liver disease model in vivo was induced by ethanol plus carbon tetrachloride(CCl4) administered to C57BL/6 mice, who were the intraperitoneally injected with the CD39 inhibitor sodium polyoxotungstate (POM1) or colchicine from the 5th week to the 8th week. Meanwhile, hepatic stellate cells were stimulated by acetaldehyde to replicate alcoholic liver fibrosis models in vitro. Exogenous ATP and POM1 were added in turn to the culture system. Pharmacological blockade of CD39 largely prevents liver damage and collagen deposition. We found that blockade or silencing of CD39 prevented acetaldehyde-induced proliferation of HSC-T6 cells and the expression of fibrogenic factors. Moreover, blockade or silencing of CD39 could block the activation of the adenosine A2A and adenosine A2B receptors and the TGF-β/Smad3 pathway, which are essential events in HSC activation. Thus, blockade of CD39 to inhibit the transduction of ATP to adenosine may prevent HSC activation, alleviating alcoholic hepatic fibrosis. The findings from this study suggest ATP-adenosine signalling is a novel therapeutic and preventive target for alcoholic liver disease.
    Keywords:  ATP; Alcoholic hepatic disease; CD39; Hepatic stellate cell activation; TGF-β/Smad3 pathway
    DOI:  https://doi.org/10.1016/j.ejphar.2021.174198
  39. Genes Cells. 2021 May 25.
      During periods of crisis, cells must compensate to survive. To this end, cells may need to alter the subcellular localization of crucial proteins. Here, we show that during starvation, VCP, the most abundant soluble ATPase, relocalizes and forms aggregate-like structures at peri-nuclear regions in PC3 prostate cancer cells. This movement is associated with a lowered metabolic state, in which mitochondrial activity and ROS production are reduced. VCP appears to explicitly sense glutamine levels, as removal of glutamine from complete medium triggered VCP relocalization and its addition to starvation media blunted VCP relocalization. Cells cultured in Gln(+) starvation media exhibited uniformly distributed VCP in the cytoplasm (free VCP) and underwent ferroptotic cell death, which was associated with a decrease in GSH levels. Moreover, the addition of a VCP inhibitor, CB-5083, in starvation media prevented VCP relocalization and triggered ferroptotic cell death. Likewise, expression of GFP-fused VCP proteins, irrespective of ATPase activities, displayed free VCP and triggered cell death during starvation. These results indicate that free VCP is essential for the maintenance of mitochondrial function and that PC3 cells employ a strategy of VCP self-aggregation to suppress mitochondrial activity in order to escape cell death during starvation, a novel VCP-mediated survival mechanism.
    DOI:  https://doi.org/10.1111/gtc.12872
  40. Nat Commun. 2021 May 28. 12(1): 3239
      The human mitochondrial AAA+ protein LONP1 is a critical quality control protease involved in regulating diverse aspects of mitochondrial biology including proteostasis, electron transport chain activity, and mitochondrial transcription. As such, genetic or aging-associated imbalances in LONP1 activity are implicated in pathologic mitochondrial dysfunction associated with numerous human diseases. Despite this importance, the molecular basis for LONP1-dependent proteolytic activity remains poorly defined. Here, we solved cryo-electron microscopy structures of human LONP1 to reveal the underlying molecular mechanisms governing substrate proteolysis. We show that, like bacterial Lon, human LONP1 adopts both an open and closed spiral staircase orientation dictated by the presence of substrate and nucleotide. Unlike bacterial Lon, human LONP1 contains a second spiral staircase within its ATPase domain that engages substrate as it is translocated toward the proteolytic chamber. Intriguingly, and in contrast to its bacterial ortholog, substrate binding within the central ATPase channel of LONP1 alone is insufficient to induce the activated conformation of the protease domains. To successfully induce the active protease conformation in substrate-bound LONP1, substrate binding within the protease active site is necessary, which we demonstrate by adding bortezomib, a peptidomimetic active site inhibitor of LONP1. These results suggest LONP1 can decouple ATPase and protease activities depending on whether AAA+ or both AAA+ and protease domains bind substrate. Importantly, our structures provide a molecular framework to define the critical importance of LONP1 in regulating mitochondrial proteostasis in health and disease.
    DOI:  https://doi.org/10.1038/s41467-021-23495-0
  41. Immunology. 2021 May 27.
      Apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) encoded by PYCARD gene, is a 22 kDa small molecule which aggregates into ASC specks during inflammasome activation. ASC protein is an adaptor protein present in several inflammasome complexes that performs several intra and extracellular functions, in monomeric form or as ASC specks, during physiological and pathological processes related to inflammation and adaptive immunity. Extracellular ASC specks (eASC specks) released during cell death by pyroptosis, can contribute as a danger signal to the propagation of inflammation via phagocytosis and activation of surrounding cells. ASC specks are found in the circulation of patients with chronic inflammatory diseases and have been considered as relevant blood biomarkers of inflammation. eASC amplifies the inflammatory signal, may induce the production of autoantibodies, transports molecules that bind to this complex, contributing to the generation of antibodies and can induce the maturation of cytokines promoting the modeling of the adaptive immunity. Although several advances have been registered in the last 21 years, there are numerous unknown or enigmatic gaps in the understanding of the role of eASC specks in the organism. Here we provide an overview about the ASC protein focusing on the probable roles of eASC specks in several diseases, up to the most recent studies concerning COVID-19.
    Keywords:  Extracellular ASC; Inflammasome; inflammasome in COVID-19; innate immunity
    DOI:  https://doi.org/10.1111/imm.13375
  42. EMBO Mol Med. 2021 May 27. e14316
      Mitochondria exist as dynamic networks whose morphology is driven by the complex interplay between fission and fusion events. Failure to modulate these processes can be detrimental to human health as evidenced by dominantly inherited, pathogenic variants in OPA1, an effector enzyme of mitochondrial fusion, that lead to network fragmentation, cristae dysmorphology and impaired oxidative respiration, manifesting typically as isolated optic atrophy. However, a significant number of patients develop more severe, systemic phenotypes, although no genetic modifiers of OPA1-related disease have been identified to date. In this issue of EMBO Molecular Medicine, supervised machine learning algorithms underlie a novel tool that enables automated, high throughput and unbiased screening of changes in mitochondrial morphology measured using confocal microscopy. By coupling this approach with a bespoke siRNA library targeting the entire mitochondrial proteome, the work described by Cretin and colleagues yielded significant insight into mitochondrial biology, discovering 91 candidate genes whose endogenous depletion can remedy impaired mitochondrial dynamics caused by OPA1 deficiency.
    DOI:  https://doi.org/10.15252/emmm.202114316
  43. Front Mol Biosci. 2021 ;8 681237
      Mitofusin 2 (Mfn2) is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial network regulation. It is an essential multifunctional protein that participates in various biological processes under physical and pathological conditions, including mitochondrial fusion, reticulum-mitochondria contacts, mitochondrial quality control, and apoptosis. Mfn2 dysfunctions have been found to contribute to cardiovascular diseases, such as ischemia-reperfusion injury, heart failure, and dilated cardiomyopathy. Here, this review mainly focuses on what is known about the structure and function of Mfn2 and its crucial role in heart failure.
    Keywords:  Mfn2; endoplasmic reticulum–mitochondria contacts; heart failure; mitochondria fusion; mitophagy
    DOI:  https://doi.org/10.3389/fmolb.2021.681237
  44. Exp Gerontol. 2021 May 25. pii: S0531-5565(21)00205-9. [Epub ahead of print] 111423
      The 2019 Coronavirus pneumonia (COVID-19) is a new infectious respiratory disease, which has caused a pandemic that has become the world's leading public health emergency, threatening people of all ages worldwide, especially the elderly. Complications of COVID-19 are closely related to an upregulation of the inflammatory response revealed by the pro-inflammatory profile of plasma cytokines (to the point of causing a cytokine storm), which is also a contributing cause of the associated coagulation disorders with venous and arterial thromboembolisms, causing multiple organ dysfunction and failure. In severe fulminant cases of COVID-19, there is an activation of coagulation and consumption of clotting factors leading to a deadly disseminated intravascular coagulation (DIC). It is well established that human immune response changes with age, and also that the pro-inflammatory profile of plasma cytokines is upregulated in both healthy and diseased elderly people. In fact, normal aging is known to be associated with a subclinical, sterile, low-grade, systemic pro-inflammatory state linked to the chronic activation of the innate immune system, a phenomenon known as "inflammaging". Inflammaging may play a role as a condition contributing to the co-occurrence of the severe hyper-inflammatory state (cytokine storm) during COVID-19, and also in other severe infections (sepsis) in older people. Moreover, we must consider the impact of inflammation on coagulation due to the crosstalk between inflammation and coagulation. The systemic inflammatory state and coagulation disorders are closely related, a phenomenon that here we call "coagul-aging" (Giunta S.). In this review, we discuss the various degrees of inflammation in older adults after being infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the adverse effects of aging on the inflammatory response and coagulation system. It is important to note that although there is no gender difference in susceptibility to COVID-19 infection, however, due to differences in angiotensin-converting enzyme 2 (ACE2) expression, innate immunity, and comorbidities, older men exhibit more severe disease and higher mortality than older women. There are currently no FDA-approved specific antiviral drugs that can be used against the virus. Therapies used in patients with COVID-19 consist of remdesivir, dexamethasone, low-molecular-weight heparin, in addition to monoclonal antibodies against the spike protein of SARS-CoV-2 in the early phase of the disease. Future pharmacological research should also consider targeting the possible role of the underlying scenario of inflammaging in healthy older people to prevent or mitigate disease complications. It is worth mentioning that some specific cytokine antagonists and traditional Chinese medicine preparations can reduce the elderly's inflammatory state.
    Keywords:  COVID-19; Coagul-aging; Cytokine storm; Deadly coagulopathy; Hyper-inflammatory; Inflammaging
    DOI:  https://doi.org/10.1016/j.exger.2021.111423
  45. BMC Res Notes. 2021 May 22. 14(1): 198
       OBJECTIVE: Elamipretide (SS31) is a mitochondria-targeted peptide that has reported functions of stabilizing mitochondrial cristae structure and improving mitochondrial bioenergetics. Several studies have documented cell protective features of this peptide, including impairment of intrinsic apoptosis by inhibiting the recruitment and activation of the pro-apoptotic BAX protein. We used live-cell imaging of ARPE-19 cells expressing fluorescently labeled BAX, cytochrome c, and a mitochondrial marker to investigate the effect of elamipretide on the kinetics of BAX recruitment, mitochondrial outer membrane permeabilization (as a function of cytochrome c release), and mitochondrial fragmentation, respectively.
    RESULT: In nucleofected and plated ARPE-19 cells, elamipretide accelerated the formation of larger mitochondria. In the presence of the apoptotic stimulator, staurosporine, cells treated with elamipretide exhibited moderately slower rates of BAX recruitment. Peptide treatment, however, did not significantly delay the onset of BAX recruitment or the final total amount of BAX that was recruited. Additionally, elamipretide showed no impairment or delay of cytochrome c release or mitochondrial fragmentation, two events associated with normal BAX activation during cell death. These results indicate that the protective effect of elamipretide is not at the level of BAX activity to induce pro-apoptotic mitochondrial dysfunction after the initiation of staurosporine-induced apoptosis.
    Keywords:  BAX; Elamipretide (SS31); Intrinsic apoptosis; Mitochondrial dysfunction; Mitochondrial fragmentation; Mitochondrial outer membrane permeabilization
    DOI:  https://doi.org/10.1186/s13104-021-05613-9
  46. Cell Rep. 2021 May 25. pii: S2211-1247(21)00525-8. [Epub ahead of print]35(8): 109180
      Mitochondrial respiratory complex subunits assemble in supercomplexes. Studies of supercomplexes have typically relied upon antibody-based quantification, often limited to a single subunit per respiratory complex. To provide a deeper insight into mitochondrial and supercomplex plasticity, we combine native electrophoresis and mass spectrometry to determine the supercomplexome of skeletal muscle from sedentary and exercise-trained mice. We quantify 422 mitochondrial proteins within 10 supercomplex bands in which we show the debated presence of complexes II and V. Exercise-induced mitochondrial biogenesis results in non-stoichiometric changes in subunits and incorporation into supercomplexes. We uncover the dynamics of supercomplex-related assembly proteins and mtDNA-encoded subunits after exercise. Furthermore, exercise affects the complexing of Lactb, an obesity-associated mitochondrial protein, and ubiquinone biosynthesis proteins. Knockdown of ubiquinone biosynthesis proteins leads to alterations in mitochondrial respiration. Our approach can be applied to broad biological systems. In this instance, comprehensively analyzing respiratory supercomplexes illuminates previously undetectable complexity in mitochondrial plasticity.
    Keywords:  complexome; exercise; mitochondrial respiratory complexes; mitochondrial supercomplexes; oxidative phosphorylation; protein complexes
    DOI:  https://doi.org/10.1016/j.celrep.2021.109180
  47. Front Med. 2021 May 28.
      Obesity increases the risk of type 2 diabetes through the induction of insulin resistance. The mechanism of insulin resistance has been extensively investigated for more than 60 years, but the essential pathogenic signal remains missing. Existing hypotheses include inflammation, mitochondrial dysfunction, hyperinsulinemia, hyperglucagonemia, glucotoxicity, and lipotoxicity. Drug discoveries based on these hypotheses are unsuccessful in the development of new medicines. In this review, multidisciplinary literature is integrated to evaluate ATP as a primary signal for insulin resistance. The ATP production is elevated in insulin-sensitive cells under obese conditions independent of energy demand, which we have named "mitochondrial overheating." Overheating occurs because of substrate oversupply to mitochondria, leading to extra ATP production. The ATP overproduction contributes to the systemic insulin resistance through several mechanisms, such as inhibition of AMPK, induction of mTOR, hyperinsulinemia, hyperglucagonemia, and mitochondrial dysfunction. Insulin resistance represents a feedback regulation of energy oversupply in cells to control mitochondrial overloading by substrates. Insulin resistance cuts down the substrate uptake to attenuate mitochondrial overloading. The downregulation of the mitochondrial overloading by medicines, bypass surgeries, calorie restriction, and physical exercise leads to insulin sensitization in patients. Therefore, ATP may represent the primary signal of insulin resistance in the cellular protective response to the substrate oversupply. The prevention of ATP overproduction represents a key strategy for insulin sensitization.
    Keywords:  AMPK; energy expenditure; hyperglucagonemia; hyperinsulinemia; mitochondria; type 2 diabetes
    DOI:  https://doi.org/10.1007/s11684-021-0862-5
  48. Sci Rep. 2021 May 27. 11(1): 11137
      A growing body of evidence indicates that cellular metabolism is involved in immune cell functions, including cytokine production. Serine is a nutritionally non-essential amino acid that can be generated by de novo synthesis and conversion from glycine. Serine contributes to various cellular responses, but the role in inflammatory responses remains poorly understood. Here, we show that macrophages rely on extracellular serine to suppress aberrant cytokine production. Depleting serine from the culture media reduced the cellular serine content in macrophages markedly, suggesting that macrophages depend largely on extracellular serine rather than cellular synthesis. Under serine deprivation, macrophages stimulated with lipopolysaccharide showed aberrant cytokine expression patterns, including a marked reduction of anti-inflammatory interleukin-10 expression and sustained expression of interleukine-6. Transcriptomic and metabolomics analyses revealed that serine deprivation causes mitochondrial dysfunction: reduction in the pyruvate content, the NADH/NAD+ ratio, the oxygen consumption rate, and the mitochondrial production of reactive oxygen species (ROS). We also found the role of mitochondrial ROS in appropriate cytokine production. Thus, our results indicate that cytokine production in macrophages is tightly regulated by the nutritional microenvironment.
    DOI:  https://doi.org/10.1038/s41598-021-90086-w
  49. Ageing Res Rev. 2021 May 20. pii: S1568-1637(21)00114-8. [Epub ahead of print] 101367
      Neurodegenerative diseases are one of the most common diseases in mankind. Although there are reports of several candidates that cause neurodegenerative diseases, the exact mechanism of pathogenesis is poorly understood. The ubiquitin-proteasome system (UPS) is an important posttranslational modification for protein degradation and control of homeostasis. Enzymes such as E1, E2, E3 ligases, and deubiquitinating enzymes (DUBs) participating in UPS, regulate disease-inducing proteins by controlling the degree of ubiquitination. Therefore, the development of treatments targeting enzymes for degenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is emerging as an attractive perspective. In particular, as DUBs are able to regulate one or more degenerative disease-related proteins, the potential as a therapeutic target is even more evident. DUBs influence the regulation of toxic proteins that cause neurodegenerative diseases by not only their removal, but also by regulating signals associated with mitophagy, autophagy, and endoplasmic reticulum-associated degradation (ERAD). In this review, we analyze not only the cellular processes of DUBs, which control neurodegenerative disease-inducing proteins, but also their potentials as a therapeutic agent for neurodegenerative diseases.
    Keywords:  Alzheimer’s disease; Amyotrophic lateral sclerosis; Deubiquitination; Huntington’s chorea; Parkinson’s disease; Ubiquitination
    DOI:  https://doi.org/10.1016/j.arr.2021.101367
  50. J Psychiatr Res. 2021 May 08. pii: S0022-3956(21)00284-3. [Epub ahead of print]139 25-29
       BACKGROUND: Oxidative stress (OS) has been implicated in the pathophysiology of late-life depression (LLD). Mitochondria are the primary source of oxidative stress and can be significantly damaged with increased OS. Circulating cell-free mtDNA (ccf-mtDNA) is a marker of cellular stress and mitochondria damage triggered by oxidative stress.
    METHODS: We evaluated the plasma levels of ccf-mtDNA in between 32 LLD and 21 never-depressed participants. We also investigated the association between ccf-mtDNA and the severity of depressive episodes and cognition performance.
    RESULTS: We found a higher ccf-mtDNA level in LLD cases compared with controls (t = -2.91, p = 0.005). Also, ccf-mtDNA was significantly correlated with the severity of depression (r = 0.42, p = 0.001). There was no significant correlation between ccf-mtDNA and measures of cognitive decline.
    LIMITATIONS: The small sample size and cross-sectional design were the main limitations of this study.
    CONCLUSION: Our results suggest that LLD is associated with elevated mitochondrial damage and cellular stress. If validated, the measurement of ccf-mtDNA in LLD can guide the development of novel treatments focused on cytoprotection and reduction of mitochondrial dysfunction for this condition.
    Keywords:  Circulating cell-free mitochondrial DNA; Late-life depression; Mitochondria; Oxidative stress
    DOI:  https://doi.org/10.1016/j.jpsychires.2021.05.015
  51. J Invest Dermatol. 2021 May 25. pii: S0022-202X(21)01243-4. [Epub ahead of print]
      Melanoma cells are relatively resistant to ER stress, which contributes to tumor progression under stressful conditions and renders tolerance to ER stress-inducing therapeutic agents. Mitochondria are tightly interconnected with ER. However, whether mitochondria play a role in regulating ER stress resistance in melanoma remains elusive. Herein, we reported that the XBP1-MARCH5-MFN2 axis conferred ER stress resistance by coordinating mitochondrial fission and mitophagy in melanoma. Our integrative bioinformatics first revealed that the down-regulation of mitochondrial genes was highly correlated with UPR activation in melanoma. Then we proved that mitochondrial fission and mitophagy were prominently induced to contribute to ER stress resistance both in vitro and in vivo by maintaining mitochondrial function. Mechanistically, the activation of IRE1α/ATF6-XBP1 branches of UPR promoted the transcription of E3 ligase MARCH5 to facilitate the ubiquitination and degradation of MFN2, which thereby triggered mitochondrial fission and mitophagy under ER stress. Together, our findings demonstrate a regulatory axis that links mitochondrial fission and mitophagy to the resistance to ER stress. Targeting mitochondrial quality control machinery can be exploited as an approach to reinforce the efficacy of ER stress-inducing agents against cancer.
    Keywords:  ER stress; MFN2; melanoma; mitochondrial fission; mitophagy
    DOI:  https://doi.org/10.1016/j.jid.2021.03.031
  52. Nucleic Acids Res. 2021 May 25. pii: gkab404. [Epub ahead of print]
      Mitochondria contain their own translation apparatus which enables them to produce the polypeptides encoded in their genome. The mitochondrially-encoded RNA components of the mitochondrial ribosome require various post-transcriptional processing steps. Additional protein factors are required to facilitate the biogenesis of the functional mitoribosome. We have characterized a mitochondrially-localized protein, YbeY, which interacts with the assembling mitoribosome through the small subunit. Loss of YbeY leads to a severe reduction in mitochondrial translation and a loss of cell viability, associated with less accurate mitochondrial tRNASer(AGY) processing from the primary transcript and a defect in the maturation of the mitoribosomal small subunit. Our results suggest that YbeY performs a dual, likely independent, function in mitochondria being involved in precursor RNA processing and mitoribosome biogenesis. Issue Section: Nucleic Acid Enzymes.
    DOI:  https://doi.org/10.1093/nar/gkab404
  53. Sci Adv. 2021 May;pii: eabf0971. [Epub ahead of print]7(22):
      In response to disturbed mitochondrial gene expression and protein synthesis, an adaptive transcriptional response sharing a signature of the integrated stress response (ISR) is activated. We report an intricate interplay between three transcription factors regulating the mitochondrial stress response: CHOP, C/EBPβ, and ATF4. We show that CHOP acts as a rheostat that attenuates prolonged ISR, prevents unfavorable metabolic alterations, and postpones the onset of mitochondrial cardiomyopathy. Upon mitochondrial dysfunction, CHOP interaction with C/EBPβ is needed to adjust ATF4 levels, thus preventing overactivation of the ATF4-regulated transcriptional program. Failure of this interaction switches ISR from an acute to a chronic state, leading to early respiratory chain deficiency, energy crisis, and premature death. Therefore, contrary to its previously proposed role as a transcriptional activator of mitochondrial unfolded protein response, our results highlight a role of CHOP in the fine-tuning of mitochondrial ISR in mammals.
    DOI:  https://doi.org/10.1126/sciadv.abf0971
  54. FASEB J. 2021 Jun;35(6): e21675
      Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease associated with mitochondrial oxidative stress. Mitochondrial reactive oxygen species (mtROS) are important for cell homeostasis by regulating mitochondrial dynamics. Here, we show that IPF BAL cells exhibited increased mitochondrial biogenesis that is, in part, due to increased nuclear expression of peroxisome proliferator-activated receptor-ɣ (PPARɣ) coactivator (PGC)-1α. Increased PPARGC1A mRNA expression directly correlated with reduced pulmonary function in IPF subjects. Oxidant-mediated activation of the p38 MAPK via Akt1 regulated PGC-1α activation to increase mitochondrial biogenesis in monocyte-derived macrophages. Demonstrating the importance of PGC-1α in fibrotic repair, mice harboring a conditional deletion of Ppargc1a in monocyte-derived macrophages or mice administered a chemical inhibitor of mitochondrial division had reduced biogenesis and increased apoptosis, and the mice were protected from pulmonary fibrosis. These observations suggest that Akt1-mediated regulation of PGC-1α maintains mitochondrial homeostasis in monocyte-derived macrophages to induce apoptosis resistance, which contributes to the pathogenesis of pulmonary fibrosis.
    Keywords:  PGC-1α; mitochondrial biogenesis; monocyte-derived macrophages; pulmonary fibrosis
    DOI:  https://doi.org/10.1096/fj.202100339R
  55. Food Chem. 2021 May 12. pii: S0308-8146(21)00820-7. [Epub ahead of print]360 129814
      At present, the harmful effects and relevant mechanism of oxidized fish oils on fish and fish cells remain unknown. Our study found that oxidized fish oils increased lipogenesis, and reduced lipolysis, activated oxidative stress by decreasing glutathione peroxidase (GPX) activity, increasing malondialdhyde (MDA) content and damaging mitochondrial structure, and activated autophagy in the liver of yellow catfish; oxidized eicosapentaenoic acid (oxEPA) induced oxidative stress in yellow catfish hepatocytes. Oxidative stress, mitochondrial dysfunction and lipophagy mediated oxEPA induced-variations in lipid metabolism. Our further investigation indicated that oxEPA-activated lipophagy was via inhibiting the DNA binding capacity of the cAMP-response element binding protein (CREB)-1 to the region of Bcl-2 promoter, which in turn suppressed the binding activity of Bcl-2 to Beclin1 and promoted autophagosome formation. For the first time, our study elucidated the mechanisms of oxidized fish oils-induced lipid deposition by the oxidative stress, mitochondrial dysfunction and CREB1-Bcl-2-Beclin1 pathway in fish.
    Keywords:  Lipid metabolism; Molecular mechanism; Oxidative stress; Oxidized fish oils; Signaling pathway
    DOI:  https://doi.org/10.1016/j.foodchem.2021.129814