bims-minfam Biomed News
on Inflammation and metabolism in ageing and cancer
Issue of 2024–11–03
five papers selected by
Ayesh Seneviratne, McMaster University



  1. Geroscience. 2024 Oct 26.
      Clonal hematopoiesis of indeterminate potential (CHIP), marked by the accumulation of somatic mutations in hematopoietic stem cells, significantly elevates the risk of all-cause mortality, mainly due to cardiovascular events. Therefore, investigating this pathophysiological phenomenon is crucial for understanding cardiovascular aging and enhancing both health span and lifespan. In the present study, we examined samples of subjects enrolled within the angiographically controlled Verona Heart Study (VHS), which provides a robust model for cardiovascular aging, particularly regarding coronary artery disease (CAD). We analyzed 44 older subjects diagnosed with coronary artery disease (CAD) and 42 healthy, sex- and age-matched controls (CAD-FREE). Employing deep sequencing and an amplicon-based approach, we focused on 11 key genetic regions in ASXL1, DNMT3A, IDH1, IDH2, JAK2, PPM1D, SF3B1, SRSF2, TET2, TP53, and U2AF1 genes to investigate clonal hematopoiesis. Subjects in the CAD group exhibited a significantly higher variant burden than those in the CAD-FREE group, both in terms of the total number of somatic variants and disruptive variants affecting protein function. This increased mutational load was notably influenced by six specific genetic regions: ASXL1, DNMT3A, IDH2, JAK2, TET2, and U2AF1, which displayed elevated variant rates in the CAD subjects. Moreover, ASXL1, DNMT3A, IDH2, JAK2, SF3B1, TET2, and TP53 exhibited substantially higher levels of disruptive variants in the CAD group. In summary, our findings highlight a correlation between clonal hematopoiesis and the accumulation of disruptive variants in specific genomic regions in the VHS cohort, thereby shedding light on their potential role in cardiovascular aging.
    Keywords:  Aging ; Clonal hematopoiesis; Coronary artery disease ; Somatic mutations
    DOI:  https://doi.org/10.1007/s11357-024-01367-x
  2. J Clin Med. 2024 Oct 12. pii: 6084. [Epub ahead of print]13(20):
      The most common causes of morbidity and mortality in the myeloproliferative neoplasms (MPNs), with the exception of myelofibrosis, are venous and arterial thrombosis, as well as more recently discovered cardiovascular disease (CVD). Clonal hematopoiesis of indeterminate potential (CHIP) is the subclinical finding in an individual of somatic mutations that are also found in clinically overt MPNs and other myeloid malignancies. The prevalence of "silent" CHIP increases with age. CHIP can transform into a clinically overt MPN at an estimated rate of 0.5 to 1% per year. It is likely, therefore, but not proven, that many, if not all, MPN patients had antecedent CHIP, possibly for many years. Moreover, both individuals with asymptomatic CHIP, as well as clinically diagnosed patients with MPN, can develop thrombotic complications. An unexpected and remarkable discovery during the last few years is that even CHIP (as well as MPNs) are significant, independent risk factors for CVD. This review discusses up-to-date information on the types of thrombotic and cardiovascular complications that are found in CHIP and MPN patients. A systemic inflammatory state (that is often subclinical) is most likely to be a major mediator of adverse reciprocal bone marrow-cardiovascular interplay that may fuel the development of progression of MPNs, including its thrombotic and vascular complications, as well as the worsening of cardiovascular disease, possibly in a "vicious cycle". Translating this to clinical practice for hematologists and oncologists who treat MPN patients, attention should now be paid to ensuring that cardiovascular risk factors are controlled and minimized, either by the patient's cardiologist or primary care physician or by the hematologist/oncologist herself or himself. This review is intended to cover the clinical aspects of thrombosis and cardiovascular complications in the MPN, accompanied by pathobiological comments.
    Keywords:  clonal hematopoiesis of indeterminate potential; microvascular; myeloproliferative neoplasms; thrombosis
    DOI:  https://doi.org/10.3390/jcm13206084