bims-minfam Biomed News
on Inflammation and metabolism in ageing and cancer
Issue of 2024–04–14
ten papers selected by
Ayesh Seneviratne, Western University



  1. Blood. 2024 Apr 10. pii: blood.2024024275. [Epub ahead of print]
      Intrinsic molecular programs and extrinsic factors including pro-inflammatory molecules are understood to regulate hematopoietic aging. This is based on foundational studies using genetic perturbation to evaluate causality. However, individual organisms exhibit natural variation in hematopoietic aging phenotypes and the molecular basis of this heterogeneity is poorly understood. Here, we generated individual single cell transcriptomic profiles of hematopoietic and non-hematopoietic cell types in five young adult and nine middle-aged C57BL/6J female mice, providing a web-accessible transcriptomic resource for the field. Among all assessed cell types, hematopoietic stem cells (HSCs) exhibited the greatest phenotypic variation in expansion among individual middle-aged mice. We computationally pooled samples to define modules representing the molecular signatures of middle-aged HSCs and interrogated which extrinsic regulatory cell types and factors would predict variance in these signatures between individual middle-aged mice. Decline in signaling mediated by ADIPOQ, KITL and IGF1 from mesenchymal stromal cells (MSCs) was predicted to have the greatest transcriptional impact on middle-aged HSCs, as opposed to signaling mediated by endothelial cells or mature hematopoietic cell types. In individual middle-aged mice, lower expression of Kitl and Igf1 in MSCs highly correlated with reduced lymphoid lineage commitment of HSCs and increased signatures of differentiation-inactive HSCs. These signatures were independent of expression of aging-associated pro-inflammatory cytokines including IL1, IL6, TNF and RANTES. In sum, we find that Kitl and Igf1 expression are co-regulated and variable between individual mice at middle age and expression of these factors is predictive of HSC activation and lymphoid commitment independently of inflammation.
    DOI:  https://doi.org/10.1182/blood.2024024275
  2. bioRxiv. 2024 Mar 30. pii: 2024.03.28.587254. [Epub ahead of print]
      Clonal hematopoiesis (CH) can predispose to blood cancers due to enhanced fitness of mutant hematopoietic stem and progenitor cells (HSPCs), but the mechanisms driving this progression are not understood. We hypothesized that malignant progression is related to microenvironment-remodelling properties of CH-mutant HSPCs. Single-cell transcriptomic profiling of the bone marrow microenvironment in Dnmt3a R878H/+ mice revealed signatures of cellular senescence in mesenchymal stromal cells (MSCs). Dnmt3a R878H/+ HSPCs caused MSCs to upregulate the senescence markers SA-β-gal, BCL-2, BCL-xL, Cdkn1a (p21) and Cdkn2a (p16), ex vivo and in vivo . This effect was cell contact-independent and can be replicated by IL-6 or TNFα, which are produced by Dnmt3a R878H/+ HSPCs. Depletion of senescent MSCs in vivo reduced the fitness of Dnmt3a R878H/+ hematopoietic cells and the progression of CH to myeloid neoplasms using a sequentially inducible Dnmt3a ; Npm1 -mutant model. Thus, Dnmt3a -mutant HSPCs reprogram their microenvironment via senescence induction, creating a self-reinforcing niche favoring fitness and malignant progression.
    Statement of Significance: Mesenchymal stromal cell senescence induced by Dnmt3a -mutant hematopoietic stem and progenitor cells drives clonal hematopoiesis and initiation of hematologic malignancy.
    DOI:  https://doi.org/10.1101/2024.03.28.587254
  3. bioRxiv. 2024 Mar 25. pii: 2024.03.20.585828. [Epub ahead of print]
      Torpor and hibernation are extreme physiological adaptations of homeotherms associated with pro-longevity effects. Yet the underlying mechanisms of how torpor affects aging, and whether hypothermic and hypometabolic states can be induced to slow aging and increase health span, remain unknown. We demonstrate that the activity of a spatially defined neuronal population in the avMLPA, which has previously been identified as a torpor-regulating brain region, is sufficient to induce a torpor like state (TLS) in mice. Prolonged induction of TLS slows epigenetic aging across multiple tissues and improves health span. We isolate the effects of decreased metabolic rate, long-term caloric restriction, and decreased core body temperature (T b ) on blood epigenetic aging and find that the pro-longevity effect of torpor-like states is mediated by decreased T b . Taken together, our findings provide novel mechanistic insight into the pro-longevity effects of torpor and hibernation and support the growing body of evidence that T b is an important mediator of aging processes.
    DOI:  https://doi.org/10.1101/2024.03.20.585828
  4. JCI Insight. 2024 Apr 08. pii: e172678. [Epub ahead of print]9(7):
      The roles of fibronectin leucine-rich transmembrane protein 2 (FLRT2) in physiological and pathological processes are not well known. Here, we identify a potentially novel function of FLRT2 in preventing endothelial cell senescence and vascular aging. We found that FLRT2 expression was lower in cultured senescent endothelial cells as well as in aged rat and human vascular tissues. FLRT2 mediated endothelial cell senescence via the mTOR complex 2, AKT, and p53 signaling pathway in human endothelial cells. We uncovered that FLRT2 directly associated with integrin subunit beta 4 (ITGB4) and thereby promoted ITGB4 phosphorylation, while inhibition of ITGB4 substantially mitigated the induction of senescence triggered by FLRT2 depletion. Importantly, FLRT2 silencing in mice promoted vascular aging, and overexpression of FLRT2 rescued a premature vascular aging phenotype. Therefore, we propose that FLRT2 could be targeted therapeutically to prevent senescence-associated vascular aging.
    Keywords:  Cell biology; Cellular senescence; Vascular biology
    DOI:  https://doi.org/10.1172/jci.insight.172678
  5. JACC Cardiovasc Imaging. 2024 Apr 04. pii: S1936-878X(24)00082-2. [Epub ahead of print]
      Population aging is one of the most important demographic transformations of our time. Increasing the "health span"-the proportion of life spent in good health-is a global priority. Biological aging comprises molecular and cellular modifications over many years, which culminate in gradual physiological decline across multiple organ systems and predispose to age-related illnesses. Cardiovascular disease is a major cause of ill health and premature death in older people. The rate at which biological aging occurs varies across individuals of the same age and is influenced by a wide range of genetic and environmental exposures. The authors review the hallmarks of biological cardiovascular aging and their capture using imaging and other noninvasive techniques and examine how this information may be used to understand aging trajectories, with the aim of guiding individual- and population-level interventions to promote healthy aging.
    Keywords:  biological heart age; cardiac computed tomography; cardiac magnetic resonance; echocardiography; healthy aging; molecular markers; multimodality cardiovascular imaging
    DOI:  https://doi.org/10.1016/j.jcmg.2024.03.001
  6. J Neurol. 2024 Apr 12.
      Our limited understanding of complex neurodegenerative disorders has held us back on the development of efficient therapies. While several approaches are currently being considered, it is still unclear what will be most successful. Among the latest and more novel ideas, the concept of blood or plasma transfusion from young healthy donors to diseased patients is gaining momentum and attracting attention beyond the scientific arena. While young or healthy blood is enriched with protective and restorative components, blood from older subjects may accumulate neurotoxic agents or be impoverished of beneficial factors. In this commentary, we present an overview of the compelling evidence collected in various animal models of brain diseases (e.g., Alzheimer, Parkinson, Huntington) to the actual clinical trials that have been conducted to test the validity of blood-related treatments in neurodegenerative diseases and argue in favor of such approach.
    Keywords:  Aging; Neurodegenerative diseases; Plasma; Plasma infusion; Plasmapheresis; Rejuvenation
    DOI:  https://doi.org/10.1007/s00415-024-12337-w
  7. Metabolism. 2024 Apr 10. pii: S0026-0495(24)00137-9. [Epub ahead of print] 155911
       BACKGROUND: The prevalence of Metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing year by year and has become one of the leading causes of end-stage liver disease worldwide. Triggering Receptor Expressed on Myeloid Cells 2 (Trem2) has been confirmed to play an essential role in the progression of MASLD, but its specific mechanism still needs to be clarified. This study aims to explore the role and mechanism of Trem2 in MASLD.
    METHODS: Human liver tissues were obtained from patients with MASLD and controls. Myeloid-specific knockout mice (Trem2mKO) and myeloid-specific overexpression mice (Trem2TdT) were fed a high-fat diet, either AMLN or CDAHFD, to establish the MASLD model. Relevant signaling molecules were assessed through lipidomics and RNA-seq analyses after that.
    RESULTS: Trem2 is upregulated in human MASLD/MASH-associated macrophages and is associated with hepatic steatosis and inflammation progression. Hepatic steatosis and inflammatory responses are exacerbated with the knockout of myeloid Trem2 in MASLD mice, while mice overexpressing Trem2 exhibit the opposite phenomenon. Mechanistically, Trem2mKO can aggravate macrophage pyroptosis through the PI3K/AKT signaling pathway and amplify the resulting inflammatory response. At the same time, Trem2 promotes the inflammation resolution phenotype transformation of macrophages through TGFβ1, thereby promoting tissue repair.
    CONCLUSIONS: Myeloid Trem2 ameliorates the progression of Metabolic dysfunction-associated steatotic liver disease by regulating macrophage pyroptosis and inflammation resolution. We believe targeting myeloid Trem2 could represent a potential avenue for treating MASLD.
    Keywords:  MASH; MASLD; MoMF; Pyroptosis; Trem2
    DOI:  https://doi.org/10.1016/j.metabol.2024.155911
  8. Front Immunol. 2024 ;15 1348189
      Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
    Keywords:  aging; immune biomarkers; immune checkpoint inhibitors; immunosenescence; neoplasm
    DOI:  https://doi.org/10.3389/fimmu.2024.1348189