bims-minfam Biomed News
on Inflammation and metabolism in ageing and cancer
Issue of 2024‒02‒18
eight papers selected by
Ayesh Seneviratne, Western University



  1. Nat Med. 2024 Feb 14.
      The search for biomarkers that quantify biological aging (particularly 'omic'-based biomarkers) has intensified in recent years. Such biomarkers could predict aging-related outcomes and could serve as surrogate endpoints for the evaluation of interventions promoting healthy aging and longevity. However, no consensus exists on how biomarkers of aging should be validated before their translation to the clinic. Here, we review current efforts to evaluate the predictive validity of omic biomarkers of aging in population studies, discuss challenges in comparability and generalizability and provide recommendations to facilitate future validation of biomarkers of aging. Finally, we discuss how systematic validation can accelerate clinical translation of biomarkers of aging and their use in gerotherapeutic clinical trials.
    DOI:  https://doi.org/10.1038/s41591-023-02784-9
  2. Biogerontology. 2024 Feb 13.
      Mitochondria are dynamic organelles that participate in different cellular process that control metabolism, cell division, and survival, and the kidney is one of the most metabolically active organs that contains abundant mitochondria. Perturbations in mitochondrial homeostasis in the kidney can accelerate kidney aging, and maintaining mitochondrial homeostasis can effectively delay aging in the kidney. Kidney aging is a degenerative process linked to detrimental processes. The significance of aberrant mitochondrial homeostasis in renal aging has received increasing attention. However, the contribution of mitochondrial quality control (MQC) to renal aging has not been reviewed in detail. Here, we generalize the current factors contributing to renal aging, review the alterations in MQC during renal injury and aging, and analyze the relationship between mitochondria and intrinsic renal cells. We also introduce MQC in the context of renal aging, and discuss the study of mitochondria in the intrinsic cells of the kidney, which is the innovation of our paper. In addition, during kidney injury and repair, the specific functions and regulatory mechanisms of MQC systems in resident and circulating cell types remain unclear. Currently, most of the studies we reviewed are based on animal and cellular models, the relationship between renal tissue aging and mitochondria has not been adequately investigated in clinical studies, and there is still a long way to go.
    Keywords:  Aging; Mitochondrial dysfunction; Mitochondrial quality control; Renal intrinsic cells
    DOI:  https://doi.org/10.1007/s10522-023-10091-6
  3. Cell. 2024 Feb 08. pii: S0092-8674(24)00067-9. [Epub ahead of print]
      Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.
    Keywords:  PUFA; ROS; complex I; diacyl-PUFA phosphatidylcholine; electron transport chain; ferroptosis; lipids; mitochondria; phospholipid; polyunsaturated fatty acid
    DOI:  https://doi.org/10.1016/j.cell.2024.01.030