bims-minfam Biomed News
on Inflammation and metabolism in ageing and cancer
Issue of 2023–05–21
five papers selected by
Ayesh Seneviratne, Western University



  1. Nat Rev Cardiol. 2023 May 16.
      Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.
    DOI:  https://doi.org/10.1038/s41569-023-00881-3
  2. Leuk Res. 2023 May 05. pii: S0145-2126(23)00572-6. [Epub ahead of print]130 107307
      Clonal hematopoiesis (CH) is the development of a certain cell lineage which is the cornerstone of hematologic malignancy especially myeloid neoplasms, however, can also be found in old age (6th-7th decade). CH is caused by many different somatic mutations most commonly in DNMT3A, TET2, ASXL1, SF3B1 and TP53. It is detected by different sequencing methods, the most commonly used ones are next generation sequencing (NGS) which can be whole exome, whole genome sequencing or a panel for certain genes. CH is divided into multiple categories depending on the clinical picture associated with it into: clonal monocytosis of undetermined significance (CMUS), clonal hematopoiesis of indeterminate significance (CHIP), clonal cytopenia and monocytosis of undetermined significance (CCMUS) and clonal cytopenia of undetermined significance (CCUS). In order to diagose CH, first other hematologic malignancies must be ruled out CH is also associated with many different entities including lung cancer and some studies have shown that COVID-19 infections are affected by CH. Certain traits and infections are associated with CH including smoking, obesity, and cardiovascular disease. A minority of patients with CH progress to a malignant process (between 0.5 %-2 %) which do not require treatment, however, any patient with CH should be kept under surveillance in order to detect any malignancy early and be treated accordingly. SIMPLE SUMMARY: Clonal hematopoiesis (CH) is considered to be the predisposing factor for development of different hematologic neoplasms. With the help of NGS, patients with CH can be monitored more closely. Several studies have shown that these patients might develop hematologic neoplasms in their lifetime. It has been subdivided into multiple groups according to the clinical picture and/or blood counts.
    Keywords:  CCUS; CHIP; CMUS; Clonal hematopoiesis; ICUS
    DOI:  https://doi.org/10.1016/j.leukres.2023.107307
  3. Nat Metab. 2023 May 15.
      Glycolysis is essential for the classical activation of macrophages (M1), but how glycolytic pathway metabolites engage in this process remains to be elucidated. Glycolysis leads to production of pyruvate, which can be transported into the mitochondria by the mitochondrial pyruvate carrier (MPC) followed by utilization in the tricarboxylic acid cycle. Based on studies that used the MPC inhibitor UK5099, the mitochondrial route has been considered to be of significance for M1 activation. Using genetic approaches, here we show that the MPC is dispensable for metabolic reprogramming and activation of M1 macrophages. In addition, MPC depletion in myeloid cells has no impact on inflammatory responses and macrophage polarization toward the M1 phenotype in a mouse model of endotoxemia. While UK5099 reaches maximal MPC inhibitory capacity at approximately 2-5 μM, higher concentrations are required to inhibit inflammatory cytokine production in M1 and this is independent of MPC expression. Taken together, MPC-mediated metabolism is dispensable for the classical activation of macrophages and UK5099 inhibits inflammatory responses in M1 macrophages due to effects other than MPC inhibition.
    DOI:  https://doi.org/10.1038/s42255-023-00800-3
  4. Cells. 2023 05 02. pii: 1296. [Epub ahead of print]12(9):
      Senescent cell accumulation has been observed in age-associated diseases including cardiovascular diseases. Senescent cells lack proliferative capacity and secrete senescence-associated secretory phenotype (SASP) factors that may cause or worsen many cardiovascular diseases. Therapies targeting senescent cells, especially senolytic drugs that selectively induce senescent cell removal, have been shown to delay, prevent, alleviate, or treat multiple age-associated diseases in preclinical models. Some senolytic clinical trials have already been completed or are underway for a number of diseases and geriatric syndromes. Understanding how cellular senescence affects the various cell types in the cardiovascular system, such as endothelial cells, vascular smooth muscle cells, fibroblasts, immune cells, progenitor cells, and cardiomyocytes, is important to facilitate translation of senotherapeutics into clinical interventions. This review highlights: (1) the characteristics of senescent cells and their involvement in cardiovascular diseases, focusing on the aforementioned cardiovascular cell types, (2) evidence about senolytic drugs and other senotherapeutics, and (3) the future path and clinical potential of senotherapeutics for cardiovascular diseases.
    Keywords:  SASP; atherosclerosis; cardiovascular diseases; cellular senescence; senolytics
    DOI:  https://doi.org/10.3390/cells12091296
  5. Nature. 2023 May;617(7961): 637-639
      
    Keywords:  Careers; Geology; Society; Solid Earth sciences
    DOI:  https://doi.org/10.1038/d41586-023-01615-8