bims-mimead Biomed News
on Mitochondrial metabolism in ageing and metabolic disease
Issue of 2025–01–12
five papers selected by
Rachel M. Handy, University of Guelph



  1. Nat Rev Endocrinol. 2025 Jan 06.
      Adipose tissue demonstrates considerable plasticity and heterogeneity, enabling metabolic, cellular and structural adaptations to environmental signals. This adaptability is key for maintaining metabolic homeostasis. Impaired adipose tissue plasticity can lead to abnormal adipose tissue responses to metabolic cues, which contributes to the development of cardiometabolic diseases. In chronic obesity, white adipose tissue undergoes pathological remodelling marked by adipocyte hypertrophy, chronic inflammation and fibrosis, which are linked to local and systemic insulin resistance. Research data suggest that the capacity for healthy or unhealthy white adipose tissue remodelling might depend on the intrinsic diversity of adipose progenitor cells (APCs), which sense and respond to metabolic cues. This Review highlights studies on APCs as key determinants of adipose tissue plasticity, discussing differences between subcutaneous and visceral adipose tissue depots during development, growth and obesity. Modulating APC functions could improve strategies for treating adipose tissue dysfunction and metabolic diseases in obesity.
    DOI:  https://doi.org/10.1038/s41574-024-01071-y
  2. Diabetes. 2025 Jan 09. pii: db240289. [Epub ahead of print]
      To curb the obesity epidemic, it is imperative that we improve our understanding of the mechanisms controlling fat mass and body weight regulation. While great progress has been made in mapping the biological feedback forces opposing weight loss, the mechanisms countering weight gain remain less well defined. Here, we integrate a mouse model of intragastric overfeeding with a comprehensive evaluation of the regulatory aspects of energy balance, encompassing food intake, energy expenditure, and fecal energy excretion. Furthermore, to assess the role of adipose tissue thermogenesis in protecting against overfeeding-induced weight gain, we analyze the expression of genes involved in futile metabolic cycles in response to overfeeding and subject uncoupling protein 1 (UCP1) knockout (KO) mice to intragastric overfeeding. Data from two independent experiments demonstrate that 7 days of 140-150% overfeeding results in substantial weight gain and triggers a potent, sustained decrease in voluntary food intake, which coincides with a gradual return of body weight toward baseline after overfeeding. Intragastric overfeeding triggers an increase in energy expenditure that seems to be adaptive. However, mice lacking UCP1 are not impaired in their ability to defend against overfeeding-induced weight gain. Finally, we show that fecal energy excretion decreases in response to overfeeding, but only during the recovery period, driven primarily by a reduction in fecal output rather than in fecal caloric density. In conclusion, while overfeeding may induce adaptive thermogenesis, the primary protective response to forced weight gain in mice appears to be a potent reduction in food intake.
    DOI:  https://doi.org/10.2337/db24-0289
  3. Int J Mol Sci. 2024 Dec 17. pii: 13488. [Epub ahead of print]25(24):
      Circulating microRNAs (miRNAs), especially transported by extracellular vesicles (EVs), have recently emerged as major new participants in interorgan communication, playing an important role in the metabolic coordination of our tissues. Among these, adipose tissue displays an extraordinary ability to secrete a vast list of EV-carried miRNAs into the circulation, representing new hormone-like factors. Despite the limitations of current methodologies for the unequivocal identification of the origin and destination of EV-carried miRNAs in vivo, recent investigations clearly support the important regulatory role of adipose-derived circulating miRNAs in shaping the metabolism and function of other tissues including the liver, muscle, endocrine pancreas, cardiovascular system, gastrointestinal tract, and brain. Here, we review the most recent findings regarding miRNAs transported by adipose-derived EVs (AdEVs) targeting other major metabolic organs and the implications of this dialog for physiology and pathology. We also review here the current and potential future diagnostic and therapeutic applications of AdEV-carried miRNAs.
    Keywords:  adipose tissue; exosomes; extracellular vesicles; intercellular communication; metabolism; microRNAs
    DOI:  https://doi.org/10.3390/ijms252413488
  4. Cell Commun Signal. 2025 Jan 09. 23(1): 17
      This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction. The sarcoendoplasmic reticulum calcium ATPase (SERCA) pump plays a key role in recapturing calcium, enabling the muscle to return to a relaxed state. A pivotal aspect of calcium homeostasis involves the dynamic interaction between mitochondria and the ER. This interaction includes local calcium signaling facilitated by RYRs and a "quasi-synaptic" mechanism formed by the IP3R-Grp75-VDAC/MCU axis, allowing rapid calcium uptake by mitochondria with minimal interference at the cytoplasmic level. Disruption of calcium transport can lead to mitochondrial calcium overload, triggering the opening of the mitochondrial permeability transition pore and subsequent release of reactive oxygen species and cytochrome C, ultimately resulting in muscle damage and atrophy. This review explores the complex relationship between the ER and mitochondria and how these organelles regulate calcium levels in skeletal muscle, aiming to provide valuable perspectives for future research on the pathogenesis of muscle diseases and the development of prevention strategies.
    Keywords:  Atrophy; Calcium; Endoplasmic reticulum; Mitochondria; Skeletal muscle
    DOI:  https://doi.org/10.1186/s12964-024-02014-w
  5. Cell Metab. 2025 Jan 07. pii: S1550-4131(24)00483-2. [Epub ahead of print]37(1): 3-4
      De novo lipogenesis (DNL) is the process whereby cells synthesize fatty acids from acetyl-CoA, contributing to steatosis in fatty liver disease. Two new studies, using genetic mouse models, metabolomics, and pharmacology, identified alternative pathways in DNL and unexpected physiological effects when targeting key enzymes in this pathway.
    DOI:  https://doi.org/10.1016/j.cmet.2024.12.001