bims-mimcad Biomed News
on Mitochondrial metabolism and cardiometabolic diseases
Issue of 2024‒04‒21
eleven papers selected by
Henver Brunetta, University of Guelph

  1. Aging Cell. 2024 Apr 14. e14169
      Circadian disruption is associated with an increased risk of cardiometabolic disorders and cardiac diseases. Time-restricted feeding/eating (TRF/TRE), restricting food intake within a consistent window of the day, has shown improvements in heart function from flies and mice to humans. However, whether and how TRF still conveys cardiac benefits in the context of circadian disruption remains unclear. Here, we demonstrate that TRF sustains cardiac performance, myofibrillar organization, and regulates cardiac lipid accumulation in Drosophila when the circadian rhythm is disrupted by constant light. TRF induces oscillations in the expression of genes associated with triglyceride metabolism. In particular, TRF induces diurnal expression of diacylglycerol O-acyltransferase 2 (Dgat2), peaking during the feeding period. Heart-specific manipulation of Dgat2 modulates cardiac function and lipid droplet accumulation. Strikingly, heart-specific overexpression of human Dgat2 at ZT 0-10 significantly improves cardiac performance in flies exposed to constant light. We have demonstrated that TRF effectively attenuates cardiac decline induced by circadian disruption. Moreover, our data suggests that diurnal expression of Dgat2 induced by TRF is beneficial for heart health under circadian disruption. Overall, our findings have underscored the relevance of TRF in preserving heart health under circadian disruptions and provided potential targets, such as Dgat2, and strategies for therapeutic interventions in mitigating cardiac aging, metabolic disorders, and cardiac diseases in humans.
    Keywords:   Dgat2 ; cardiac health; circadian disruption; time‐restricted feeding; transcriptome analysis; triglyceride metabolism
  2. Cardiovasc Diabetol. 2024 Apr 15. 23(1): 129
      The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2-4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future.
    Keywords:  Cyclophilin A; Ferroptosis; High-fat diet; Myocardial lipotoxicity
  3. Biochemistry (Mosc). 2024 Feb;89(2): 279-298
      An increase in mitochondrial DNA (mtDNA) mutations and an ensuing increase in mitochondrial reactive oxygen species (ROS) production have been suggested to be a cause of the aging process ("the mitochondrial hypothesis of aging"). In agreement with this, mtDNA-mutator mice accumulate a large amount of mtDNA mutations, giving rise to defective mitochondria and an accelerated aging phenotype. However, incongruously, the rates of ROS production in mtDNA mutator mitochondria have generally earlier been reported to be lower - not higher - than in wildtype, thus apparently invalidating the "mitochondrial hypothesis of aging". We have here re-examined ROS production rates in mtDNA-mutator mice mitochondria. Using traditional conditions for measuring ROS (succinate in the absence of rotenone), we indeed found lower ROS in the mtDNA-mutator mitochondria compared to wildtype. This ROS mainly results from reverse electron flow driven by the membrane potential, but the membrane potential reached in the isolated mtDNA-mutator mitochondria was 33 mV lower than that in wildtype mitochondria, due to the feedback inhibition of succinate oxidation by oxaloacetate, and to a lower oxidative capacity in the mtDNA-mutator mice, explaining the lower ROS production. In contrast, in normal forward electron flow systems (pyruvate (or glutamate) + malate or palmitoyl-CoA + carnitine), mitochondrial ROS production was higher in the mtDNA-mutator mitochondria. Particularly, even during active oxidative phosphorylation (as would be ongoing physiologically), higher ROS rates were seen in the mtDNA-mutator mitochondria than in wildtype. Thus, when examined under physiological conditions, mitochondrial ROS production rates are indeed increased in mtDNA-mutator mitochondria. While this does not prove the validity of the mitochondrial hypothesis of aging, it may no longer be said to be negated in this respect. This paper is dedicated to the memory of Professor Vladimir P. Skulachev.
    Keywords:  ROS production; aging; membrane potential; mtDNA mutator mice; oxidative phosphorylation; succinate
  4. JACC Heart Fail. 2024 Apr 03. pii: S2213-1779(24)00182-3. [Epub ahead of print]
    PRESERVED-HF Investigators
      BACKGROUND: Although sodium glucose co-transporter 2 inhibitors (SGLT2is) improve heart failure (HF)-related symptoms and outcomes in HF with preserved ejection fraction (HFpEF), underlying mechanisms remain unclear. In HF with reduced EF, dapagliflozin altered ketone and fatty acid metabolites vs placebo; however, metabolite signatures of SGLT2is have not been well elucidated in HFpEF.OBJECTIVES: The goal of this study was to assess whether SGLT2i treatment altered systemic metabolic pathways and their relationship to outcomes in HFpEF.
    METHODS: Targeted profiling of 64 metabolites was performed from 293 participants in PRESERVED-HF (Dapagliflozin in PRESERVED Ejection Fraction Heart Failure), a 12-week, placebo-controlled trial of dapagliflozin. Linear regression assessed changes in metabolite factors defined by principal components analysis (PCA) with dapagliflozin vs placebo. The relationship between changes in metabolite factors with changes in study endpoints was also assessed.
    RESULTS: The mean age was 70 ± 11 years, 58% were female, and 29% were Black. There were no significant differences in 12 PCA-derived metabolite factors between treatment arms, including metabolites reflecting ketone, fatty acid, or branched-chain amino acid (BCAA) pathways. Combining treatment arms, changes in BCAAs and branched-chain ketoacids were negatively associated with changes in N-terminal pro-B-type natriuretic peptide; changes in medium-/long-chain acylcarnitines were positively associated with changes in N-terminal pro-B-type natriuretic peptide and negatively associated with changes in 6-minute walk test distance; and changes in ketones were negatively associated with changes in weight, without treatment interaction.
    CONCLUSIONS: Leveraging targeted metabolomics in a placebo-controlled SGLT2i trial of HFpEF, dapagliflozin did not alter systemic metabolic as reflected by circulating metabolites, in contrast with reported effects in HF with reduced ejection fraction. Metabolite biomarkers reflecting BCAA, ketone, and fatty acid metabolism were associated with markers of disease severity, suggesting a role for potential novel treatment targets. (Dapagliflozin in PRESERVED Ejection Fraction Heart Failure [PRESERVED-HF]; NCT03030235).
    Keywords:  SGLT2i; acylcarnitine; branched-chain amino acids; heart failure with preserved ejection fraction; ketone bodies; metabolomics
  5. Pflugers Arch. 2024 Apr 16.
      The myocardium is a highly oxidative tissue in which mitochondria are essential to supply the energy required to maintain pump function. When pathological hypertrophy develops, energy consumption augments and jeopardizes mitochondrial capacity. We explored the cardiac consequences of chronic swimming training, focusing on the mitochondrial network, in spontaneously hypertensive rats (SHR). Male adult SHR were randomized to sedentary or trained (T: 8-week swimming protocol). Blood pressure and echocardiograms were recorded, and hearts were removed at the end of the training period to perform molecular, imaging, or isolated mitochondria studies. Swimming improved cardiac midventricular shortening and decreased the pathological hypertrophic marker atrial natriuretic peptide. Oxidative stress was reduced, and even more interesting, mitochondrial spatial distribution, dynamics, function, and ATP were significantly improved in the myocardium of T rats. In the signaling pathway triggered by training, we detected an increase in the phosphorylation level of both AKT and glycogen synthase kinase-3 β, key downstream targets of insulin-like growth factor 1 signaling that are crucially involved in mitochondria biogenesis and integrity. Aerobic exercise training emerges as an effective approach to improve pathological cardiac hypertrophy and bioenergetics in hypertension-induced cardiac hypertrophy.
    Keywords:  Aerobic exercise; Hypertension; Mitochondria; Physiological hypertrophy
  6. PLoS One. 2024 ;19(4): e0301990
      Cardiac remodeling is the primary pathological feature of chronic heart failure (HF). Exploring the characteristics of cardiac remodeling in the very early stages of HF and identifying targets for intervention are essential for discovering novel mechanisms and therapeutic strategies. Silent mating type information regulation 2 homolog 3 (SIRT3), as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolism. However, whether SIRT3 plays a role in cardiac remodeling by regulating the biosynthesis of mitochondrial cardiolipin (CL) is unknown. In this study, we induced pressure overload in wild-type (WT) and SIRT3 knockout (SIRT3-/-) mice via transverse aortic constriction (TAC). Compared with WT mouse hearts, the hearts of SIRT3-/- mice exhibited more-pronounced cardiac remodeling and fibrosis, greater reactive oxygen species (ROS) production, decreased mitochondrial-membrane potential (ΔΨm), and abnormal mitochondrial morphology after TAC. Furthermore, SIRT3 deletion aggravated TAC-induced decrease in total CL content, which might be associated with the downregulation of the CL synthesis related enzymes cardiolipin synthase 1 (CRLS1) and phospholipid-lysophospholipid transacylase (TAFAZZIN). In our in vitro experiments, SIRT3 overexpression prevented angiotensin II (AngII)- induced aberrant mitochondrial function, CL biosynthesis disorder, and peroxisome proliferator-activated receptor gamma (PPARγ) downregulation in cardiomyocytes; meanwhile, SIRT3 knockdown exacerbated these effects. Moreover, the addition of GW9662, a PPARγ antagonist, partially counteracted the beneficial effects of SIRT3 overexpression. In conclusion, SIRT3 regulated PPARγ-mediated CL biosynthesis, maintained the structure and function of mitochondria, and thereby protected the myocardium against cardiac remodeling.
  7. J Vis Exp. 2024 Mar 29.
      The pathophysiology of heart failure with preserved ejection fraction (HFpEF) driven by lipotoxicity is incompletely understood. Given the urgent need for animal models that accurately mimic cardio-metabolic HFpEF, a hyperlipidemia-induced murine model was developed by reverse engineering phenotypes seen in HFpEF patients. This model aimed to investigate HFpEF, focusing on the interplay between lipotoxicity and metabolic syndrome. Hyperlipidemia was induced in wild-type (WT) mice on a 129J strain background through bi-weekly intraperitoneal injections of poloxamer-407 (P-407), a block co-polymer that blocks lipoprotein lipase, combined with a single intravenous injection of adeno-associated virus 9-cardiac troponin T-low-density lipoprotein receptor (AAV9-cTnT-LDLR). Extensive assessments were conducted between 4 and 8 weeks post-treatment, including echocardiography, blood pressure recording, whole-body plethysmography, echocardiography (ECG) telemetry, activity wheel monitoring (AWM), and biochemical and histological analyses. The LDLR/P-407 mice exhibited distinctive features at four weeks, including diastolic dysfunction, preserved ejection fraction, and increased left ventricular wall thickness. Notably, blood pressure and renal function remained within normal ranges. Additionally, ECG and AWM revealed heart blocks and reduced activity, respectively. Diastolic function deteriorated at eight weeks, accompanied by a significant decline in respiratory rates. Further investigation into the double treatment model revealed elevated fibrosis, wet/dry lung ratios, and heart weight/body weight ratios. The LDLR/P-407 mice exhibited xanthelasmas, ascites, and cardiac ischemia. Interestingly, sudden deaths occurred between 6 and 12 weeks post-treatment. The murine HFpEF model offers a valuable and promising experimental resource for elucidating the intricacies of metabolic syndrome contributing to diastolic dysfunction within the context of lipotoxicity-mediated HFpEF.
  8. J Cardiovasc Transl Res. 2024 Apr 16.
      Epicardial interventions have forged new frontiers in cardiac ablation and device therapies. Healthy human hearts typically present with significant adipose tissue layers superficial to the ventricular myocardium and may hinder success or increase the complexities of epicardial interventions. We quantitatively evaluated the distribution of epicardial adipose tissue on the surface of human hearts and provided high-fidelity 3-dimensional reconstructions of these epicardial adipose tissue layers. The regional thickness of adipose tissues was analyzed at 51 anatomical reference points surrounding both ventricles and compared to specific patient demographics. Adipose deposits on the human hearts displayed characteristic patterns, with the thickest accumulations along the interventricular septa (anterior, 9.01 ± 0.50 mm; posterior, 6.78 ± 0.50 mm) and the right ventricular margin (7.44 ± 0.57 mm). We provide one of the most complete characterizations of human epicardial adipose location and relative layer thickness. These results are considered fundamental for an underlying anatomic understanding when performing procedures within the pericardial space.
    Keywords:  Cardiac anatomy; Epicardial adipose tissue; Epicardial electrophysiology; Epicardial pacing
  9. Sci Transl Med. 2024 Apr 17. 16(743): eadi0077
    IPAC Investigators
      Peripartum cardiomyopathy (PPCM) is an idiopathic form of pregnancy-induced heart failure associated with preeclampsia. Circulating factors in late pregnancy are thought to contribute to both diseases, suggesting a common underlying pathophysiological process. However, what drives this process remains unclear. Using serum proteomics, we identified the senescence-associated secretory phenotype (SASP), a marker of cellular senescence associated with biological aging, as the most highly up-regulated pathway in young women with PPCM or preeclampsia. Placentas from women with preeclampsia displayed multiple markers of amplified senescence and tissue aging, as well as overall increased gene expression of 28 circulating proteins that contributed to SASP pathway enrichment in serum samples from patients with preeclampsia or PPCM. The most highly expressed placental SASP factor, activin A, was associated with cardiac dysfunction or heart failure severity in women with preeclampsia or PPCM. In a murine model of PPCM induced by cardiomyocyte-specific deletion of the gene encoding peroxisome proliferator-activated receptor γ coactivator-1α, inhibiting activin A signaling in the early postpartum period with a monoclonal antibody to the activin type II receptor improved heart function. In addition, attenuating placental senescence with the senolytic compound fisetin in late pregnancy improved cardiac function in these animals. These findings link senescence biology to cardiac dysfunction in pregnancy and help to elucidate the pathogenesis underlying cardiovascular diseases of pregnancy.
  10. Circ Res. 2024 Apr 19.
      BACKGROUND: Nearly half of adults have hypertension, a major risk factor for cardiovascular disease. Mitochondrial hyperacetylation is linked to hypertension, but the role of acetylation of specific proteins is not clear. We hypothesized that acetylation of mitochondrial CypD (cyclophilin D) at K166 contributes to endothelial dysfunction and hypertension.METHODS: To test this hypothesis, we studied CypD acetylation in patients with essential hypertension, defined a pathogenic role of CypD acetylation in deacetylation mimetic CypD-K166R mutant mice and endothelial-specific GCN5L1 (general control of amino acid synthesis 5 like 1)-deficient mice using an Ang II (angiotensin II) model of hypertension.
    RESULTS: Arterioles from hypertensive patients had 280% higher CypD acetylation coupled with reduced Sirt3 (sirtuin 3) and increased GCN5L1 levels. GCN5L1 regulates mitochondrial protein acetylation and promotes CypD acetylation, which is counteracted by mitochondrial deacetylase Sirt3. In human aortic endothelial cells, GCN5L1 depletion prevents superoxide overproduction. Deacetylation mimetic CypD-K166R mice were protected from vascular oxidative stress, endothelial dysfunction, and Ang II-induced hypertension. Ang II-induced hypertension increased mitochondrial GCN5L1 and reduced Sirt3 levels resulting in a 250% increase in GCN5L1/Sirt3 ratio promoting CypD acetylation. Treatment with mitochondria-targeted scavenger of cytotoxic isolevuglandins normalized GCN5L1/Sirt3 ratio, reduced CypD acetylation, and attenuated hypertension. The role of mitochondrial acetyltransferase GCN5L1 in the endothelial function was tested in endothelial-specific GCN5L1 knockout mice. Depletion of endothelial GCN5L1 prevented Ang II-induced mitochondrial oxidative stress, reduced the maladaptive switch of vascular metabolism to glycolysis, prevented inactivation of endothelial nitric oxide, preserved endothelial-dependent relaxation, and attenuated hypertension.
    CONCLUSIONS: These data support the pathogenic role of CypD acetylation in endothelial dysfunction and hypertension. We suggest that targeting cytotoxic mitochondrial isolevuglandins and GCN5L1 reduces CypD acetylation, which may be beneficial in cardiovascular disease.
    Keywords:  blood pressure; cardiovascular diseases; hypertension; mitochondria; superoxides
  11. Nat Aging. 2024 Apr 16.
      Recent investigations into heterochronic parabiosis have unveiled robust rejuvenating effects of young blood on aged tissues. However, the specific rejuvenating mechanisms remain incompletely elucidated. Here we demonstrate that small extracellular vesicles (sEVs) from the plasma of young mice counteract pre-existing aging at molecular, mitochondrial, cellular and physiological levels. Intravenous injection of young sEVs into aged mice extends their lifespan, mitigates senescent phenotypes and ameliorates age-associated functional declines in multiple tissues. Quantitative proteomic analyses identified substantial alterations in the proteomes of aged tissues after young sEV treatment, and these changes are closely associated with metabolic processes. Mechanistic investigations reveal that young sEVs stimulate PGC-1α expression in vitro and in vivo through their miRNA cargoes, thereby improving mitochondrial functions and mitigating mitochondrial deficits in aged tissues. Overall, this study demonstrates that young sEVs reverse degenerative changes and age-related dysfunction, at least in part, by stimulating PGC-1α expression and enhancing mitochondrial energy metabolism.