bims-mimcad Biomed News
on Mitochondrial metabolism and cardiometabolic diseases
Issue of 2024‒01‒28
thirteen papers selected by
Henver Brunetta, University of Guelph

  1. Mol Metab. 2024 Jan 19. pii: S2212-8778(24)00015-2. [Epub ahead of print]80 101884
      BACKGROUND: Energy-dissipating brown adipocytes have significant potential for improving systemic metabolism. Vanin-1, a membrane-bound pantetheinase, is involved in various biological processes in mice. However, its role in BAT mitochondrial function is still unclear. In this study, we aimed to elucidate the impact of Vanin-1 on BAT function and contribution during overnutrition-induced obesity.METHODS: Vanin-1 expression was analyzed in different adipose depots in mice. The cellular localization of Vanin-1 was analyzed by confocal microscopy and western blots. Mice lacking Vanin-1 (Vanin-1-/-) were continuously fed either a chow diet or a high-fat diet (HFD) to establish an obesity model. RNA-seq analysis was performed to identify the molecular changes associated with Vanin-1 deficiency during obesity. BAT-specific Vanin-1 overexpression mice were established to determine the effects of Vanin-1 in vivo. Cysteamine treatment was used to examine the effect of enzymatic reaction products of Vanin-1 on BAT mitochondria function in Vanin-1-/- mice.
    RESULTS: The results indicate that the expression of Vanin-1 is reduced in BAT from both diet-induced and leptin-deficient obese mice. Study on the subcellular location of Vanin-1 shows that it has a mitochondrial localization. Vanin-1 deficiency results in increased adiposity, BAT dysfunction, aberrant mitochondrial structure, and promotes HFD induced-BAT whitening. This is attributed to the impairment of the electron transport chain (ETC) in mitochondria due to Vanin-1 deficiency, resulting in reduced mitochondrial respiration. Overexpression of Vanin-1 significantly enhances energy expenditure and thermogenesis in BAT, renders mice resistant to diet-induced obesity. Furthermore, treatment with cysteamine rescue the mitochondrial dysfunction in Vanin-1-/- mice.
    CONCLUSIONS: Collectively, these findings suggest that Vanin-1 plays a crucial role in promoting mitochondrial respiration to counteract diet-induced obesity, making it a potential therapeutic target for obesity.
    Keywords:  BAT; Diet-induced obesity; Electron transport chain; Mitochondrial thermogenesis; Vanin-1
  2. Redox Biol. 2024 Jan 19. pii: S2213-2317(24)00020-X. [Epub ahead of print]70 103044
      Hyperglycemia increases the heart sensitivity to ischemia-reperfusion (IR), but the underlying cellular mechanisms remain unclear. Mitochondrial dynamics (the processes that govern mitochondrial morphology and their interactions with other organelles, such as the reticulum), has emerged as a key factor in the heart vulnerability to IR. However, it is unknown whether mitochondrial dynamics contributes to hyperglycemia deleterious effect during IR. We hypothesized that (i) the higher heart vulnerability to IR in hyperglycemic conditions could be explained by hyperglycemia effect on the complex interplay between mitochondrial dynamics, Ca2+ homeostasis, and reactive oxygen species (ROS) production; and (ii) the activation of DRP1, a key regulator of mitochondrial dynamics, could play a central role. Using transmission electron microscopy and proteomic analysis, we showed that the interactions between sarcoplasmic reticulum and mitochondria and mitochondrial fission were increased during IR in isolated rat hearts perfused with a hyperglycemic buffer compared with hearts perfused with a normoglycemic buffer. In isolated mitochondria and cardiomyocytes, hyperglycemia increased mitochondrial ROS production and Ca2+ uptake. This was associated with higher RyR2 instability. These results could contribute to explain the early mPTP activation in mitochondria from isolated hearts perfused with a hyperglycemic buffer and in hearts from streptozotocin-treated rats (to increase the blood glucose). DRP1 inhibition by Mdivi-1 during the hyperglycemic phase and before IR induction, normalized Ca2+ homeostasis, ROS production, mPTP activation, and reduced the heart sensitivity to IR in streptozotocin-treated rats. In conclusion, hyperglycemia-dependent DRP1 activation results in higher reticulum-mitochondria calcium exchange that contribute to the higher heart vulnerability to IR.
    Keywords:  Calcium homeostasis; Hyperglycemia; Ischemia-reperfusion; Mitochondria
  3. Front Cardiovasc Med. 2023 ;10 1323760
      Background: A metabolic shift from fatty acid (FAO) to glucose oxidation (GO) occurs during cardiac hypertrophy (LVH) and heart failure with reduced ejection fraction (HFrEF), which is mediated by PGC-1α and PPARα. While the transcription factor EB (TFEB) regulates the expression of both PPARGC1A/PGC-1α and PPARA/PPARα, its contribution to metabolic remodeling is uncertain.Methods: Luciferase assays were performed to verify that TFEB regulates PPARGC1A expression. Cardiomyocyte-specific Tfeb knockout (cKO) and wildtype (WT) male mice were subjected to 27G transverse aortic constriction or sham surgery for 21 and 56 days, respectively, to induce LVH and HFrEF. Echocardiographic, morphological, and histological analyses were performed. Changes in markers of cardiac stress and remodeling, metabolic shift and oxidative phosphorylation were investigated by Western blot analyses, mass spectrometry, qRT-PCR, and citrate synthase and complex II activity measurements.
    Results: Luciferase assays revealed that TFEB increases PPARGC1A/PGC-1α expression, which was inhibited by class IIa histone deacetylases and derepressed by protein kinase D. At baseline, cKO mice exhibited a reduced cardiac function, elevated stress markers and a decrease in FAO and GO gene expression compared to WT mice. LVH resulted in increased cardiac remodeling and a decreased expression of FAO and GO genes, but a comparable decline in cardiac function in cKO compared to WT mice. In HFrEF, cKO mice showed an improved cardiac function, lower heart weights, smaller myocytes and a reduction in cardiac remodeling compared to WT mice. Proteomic analysis revealed a comparable decrease in FAO- and increase in GO-related proteins in both genotypes. A significant reduction in mitochondrial quality control genes and a decreased citrate synthase and complex II activities was observed in hearts of WT but not cKO HFrEF mice.
    Conclusions: TFEB affects the baseline expression of metabolic and mitochondrial quality control genes in the heart, but has only minor effects on the metabolic shift in LVH and HFrEF in mice. Deletion of TFEB plays a protective role in HFrEF but does not affect the course of LVH. Further studies are needed to elucidate if TFEB affects the metabolic flux in stressed cardiomyocytes.
    Keywords:  TFEB; fatty acid oxidation; heart failure with reduced ejection fraction; left ventricular hypertrophy; metabolic remodeling; transverse aortic constriction
  4. bioRxiv. 2024 Jan 01. pii: 2023.12.31.573776. [Epub ahead of print]
      Choline is an essential nutrient for cellular metabolism, including the biosynthesis of phospholipids, neurotransmitters, and one-carbon metabolism. A critical step of choline catabolism is the mitochondrial import and synthesis of chorine-derived methyl donors, such as betaine. However, the underlying mechanisms and the biological significance of mitochondrial choline catabolism remain insufficiently understood. Here, we report that a mitochondrial inner-membrane protein SLC25A48 controls mitochondrial choline transport and catabolism in vivo . We demonstrate that SLC25A48 is highly expressed in brown adipose tissue and required for whole-body cold tolerance, thermogenesis, and mitochondrial respiration. Mechanistically, choline uptake into the mitochondrial matrix via SLC25A48 facilitates betaine synthesis and one-carbon metabolism. Importantly, cells lacking SLC25A48 exhibited reduced synthesis of purine nucleotides and failed to initiate the G1-to-S phase transition, thereby leading to cell death. Taken together, the present study identified SLC25A48 as a mitochondrial carrier that mediates choline import and plays a critical role in mitochondrial respiratory capacity, purine nucleotide synthesis, and cell survival.Key points: SLC25A48 is required for mitochondrial choline uptake.Mitochondrial choline uptake regulates one-carbon contribution to purine nucleotide synthesis.Brown fat thermogenesis requires mitochondrial choline catabolism for respiratory capacity.Cancer cells require mitochondrial choline uptake for cell survival.
  5. Free Radic Biol Med. 2024 Jan 22. pii: S0891-5849(24)00042-X. [Epub ahead of print]
      Cardiomyocyte maturation during pre- and postnatal development requires multiple intertwined processes, including a switch in energy generation from glucose utilization in the embryonic heart towards fatty acid oxidation after birth. This is accompanied by a boost in mitochondrial mass to increase capacities for oxidative phosphorylation and ATP generation required for efficient contraction. Whether cardiomyocyte differentiation is paralleled by augmented capacities to deal with reactive oxygen species (ROS), physiological byproducts of the mitochondrial electron transport chain (ETC), is less clear. Here we show that expression of genes and proteins involved in redox homeostasis and protein quality control within mitochondria increases after birth in the mouse and human heart. Using primary embryonic, neonatal and adult mouse cardiomyocytes in vitro we investigated how excessive ROS production induced by mitochondrial dysfunction affects cell survival and stress response at different stages of maturation. Embryonic and neonatal cardiomyocytes largely tolerate inhibition of ETC complex III by antimycin A (AMA) as well as ATP synthase (complex V) by oligomycin but are susceptible to complex I inhibition by rotenone. All three inhibitors alter the intracellular distribution and ultrastructure of mitochondria in neonatal cardiomyocytes. In contrast, adult cardiomyocytes treated with AMA undergo rapid morphological changes and cellular disintegration. At the molecular level embryonic cardiomyocytes activate antioxidative defense mechanisms, the integrated stress response (ISR) and ER stress but not the mitochondrial unfolded protein response upon complex III inhibition. In contrast, adult cardiomyocytes fail to activate the ISR and antioxidative proteins following AMA treatment. In conclusion, our results identified fundamental differences in cell survival and stress response in differentiated compared to immature cardiomyocytes subjected to mitochondrial dysfunction. The high stress tolerance of immature cardiomyocytes might allow outlasting unfavorable intrauterine conditions thereby preventing fetal or perinatal heart disease and may contribute to the regenerative capacity of the embryonic and neonatal mammalian heart.
    Keywords:  Cardiomyocyte differentiation; Cardiomyocyte survival; Cellular stress response; Mitochondrial dysfunction; Oxidative stress
  6. J Vis Exp. 2024 Jan 05.
      Aging is associated with multiple physiological changes that contribute synergistically and independently to physical disability and the risk of chronic disease. Although the etiology of age-related physical disability is complex and multifactorial, the decline in mitochondrial function appears to coincide with the progression of functional decline in many older adults. The reason why there is a decrease in mitochondrial function with aging remains elusive, but emerging science indicates that both fuel metabolism and circadian rhythms can influence mitochondrial function. Recent studies have established that circadian rhythms become disturbed with aging, and that disrupted circadian rhythms have pathological consequences that impact mitochondrial function and overlap with many age-associated chronic diseases. Current quantitative methods for direct assessment of mitochondrial function are invasive and typically require a muscle biopsy, which can pose difficulties with participant recruitment and study adherence, given the perceived levels of potential pain and risk. Thus, an innovative and relatively noninvasive protocol to assess changes in mitochondrial function at the cellular level and circadian patterns in older adults was adapted. Specifically, a real-time metabolic flux analyzer is used to assess the mitochondrial bioenergetic function of white blood cells under differential substrate availability. The expression of circadian clock genes in white blood cells to cross-correlate with the mitochondrial bioenergetics and circadian rhythm outcomes are also analyzed. It is believed that these innovative methodological approaches will aid future clinical trials by providing minimally invasive methods for studying mitochondrial substrate preference and circadian rhythms in older adults.
  7. J Physiol Biochem. 2024 Jan 23.
      The role of Peroxisome proliferator-activated receptor-gamma coactivator alpha (PGC-1α) in fat metabolism is not well known. In this study, we compared the mechanisms of muscle-specific PGC-1α overexpression and exercise-related adaptation-dependent fat metabolism. PGC-1α trained (PGC-1α Ex) and wild-trained (wt-ex) mice were trained for 10 weeks, five times a week at 30 min per day with 60 percent of their maximal running capacity. The PGC-1α overexpressed animals exhibited higher levels of Fibronectin type III domain-containing protein 5 (FNDC5), 5' adenosine monophosphate-activated protein kinase alpha (AMPK-α), the mammalian target of rapamycin (mTOR), Sirtuin 1 (SIRT1), Lon protease homolog 1 (LONP1), citrate synthase (CS), succinate dehydrogenase complex flavoprotein subunit A (SDHA), Mitofusin-1 (Mfn1), endothelial nitric oxide synthase (eNOS), Hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), G protein-coupled receptor 41 (GPR41), and Phosphatidylcholine Cytidylyltransferase 2 (PCYT2), and lower levels of Sirtuin 3 (SIRT3) compared to wild-type animals. Exercise training increased the protein content levels of SIRT1, HSL, and ATGL in both the wt-ex and PGC-1α trained groups. PGC-1α has a complex role in cellular signaling, including the upregulation of lipid metabolism-associated proteins. Our data reveals that although exercise training mimics the effects of PGC-1α overexpression, it incorporates some PGC-1α-independent adaptive mechanisms in fat uptake and cell signaling.
    Keywords:  Exercise; Lipid Metabolism; Mitochondrial function; PGC-1α overexpression; Skeletal muscle
  8. Nat Metab. 2024 Jan 23.
      Small extracellular vesicles (EVs) are signalling messengers that regulate inter-tissue communication through delivery of their molecular cargo. Here, we show that liver-derived EVs are acute regulators of whole-body glycaemic control in mice. Liver EV secretion into the circulation is increased in response to hyperglycaemia, resulting in increased glucose effectiveness and insulin secretion through direct inter-organ EV signalling to skeletal muscle and the pancreas, respectively. This acute blood glucose lowering effect occurs in healthy and obese mice with non-alcoholic fatty liver disease, despite marked remodelling of the liver-derived EV proteome in obese mice. The EV-mediated blood glucose lowering effects were recapitulated by administration of liver EVs derived from humans with or without progressive non-alcoholic fatty liver disease, suggesting broad functional conservation of liver EV signalling and potential therapeutic utility. Taken together, this work reveals a mechanism whereby liver EVs act on peripheral tissues via endocrine signalling to restore euglycaemia in the postprandial state.
  9. STAR Protoc. 2024 Jan 18. pii: S2666-1667(24)00007-8. [Epub ahead of print]5(1): 102842
      Mitochondrial dynamic process is important for cell viability, metabolic activity, and mitochondria health. Here, we present a protocol for measuring mitochondrial size through immunofluorescence staining, confocal imaging, and analysis in ImageJ. We describe the steps for tissue processing, antigen retrieval, mitochondrial staining using an integrating immunofluorescence assay, and computerized image analysis to measure each mitochondrial size in mouse and human liver tissues. This protocol reduces tissue sample volume and processing time for the preparation of primary cells. For complete details on the use and execution of this protocol, please refer to Pearah et al.1.
    Keywords:  Cell Biology; Health Sciences; Metabolism
  10. Obesity (Silver Spring). 2024 Jan 23.
      OBJECTIVE: A ketogenic diet (KD) characterized by very low carbohydrate intake and high fat consumption may simultaneously induce weight loss and be cardioprotective. The "thrifty substrate hypothesis" posits that ketone bodies are more energy efficient compared with other cardiac oxidative substrates such as fatty acids. This work aimed to study whether a KD with presumed increased myocardial ketone body utilization reduces cardiac fatty acid uptake and oxidation, resulting in decreased myocardial oxygen consumption (MVO2 ).METHODS: This randomized controlled crossover trial examined 11 individuals with overweight or obesity on two occasions: (1) after a KD and (2) after a standard diet. Myocardial free fatty acid (FFA) oxidation, uptake, and esterification rate were measured using dynamic [11 C]palmitate positron emission tomography (PET)/computed tomography, whereas MVO2 and myocardial external efficiency (MEE) were measured using dynamic [11 C]acetate PET.
    RESULTS: The KD increased plasma β-hydroxybutyrate, reduced myocardial FFA oxidation (p < 0.01) and uptake (p = 0.03), and increased FFA esterification (p = 0.03). No changes were observed in MVO2 (p = 0.2) or MEE (p = 0.87).
    CONCLUSIONS: A KD significantly reduced myocardial FFA uptake and oxidation, presumably by increasing ketone body oxidation. However, this change in cardiac substrate utilization did not improve MVO2 , speaking against the thrifty substrate hypothesis.
  11. Metabolism. 2024 Jan 21. pii: S0026-0495(24)00022-2. [Epub ahead of print] 155796
      Imeglimin is a recently developed anti-diabetic drug that could concurrently promote insulin secretion and insulin sensitivity, while its mechanisms of action are not fully understood. Here we show that imeglimin administration could protect mice from high fat diet-induced weight gain with enhanced energy expenditure and attenuated whitening of brown adipose tissue. Imeglimin administration led to significant alteration of gut microbiota, which included an increase of Akkermansia genus, with attenuation of obesity-associated gut pathologies. Ablation of microbiota by antibiotic treatment partially abrogated the insulin sensitizing effects of imeglimin, while not affecting its actions on body weight gain or brown adipose tissue. Collectively, our results characterize imeglimin as a potential agent promoting energy expenditure and gut integrity, providing new insights into its mechanisms of action.
    Keywords:  Brown adipose tissue; Energy expenditure; Gut microbiota; Imeglimin; Insulin sensitivity
  12. Cell Death Discov. 2024 Jan 26. 10(1): 53
      Pathological cardiac hypertrophy is an independent risk factor for heart failure. Disruption of mitochondrial protein homeostasis plays a key role in pathological cardiac hypertrophy; however, the mechanism of maintaining mitochondrial homeostasis in pathological cardiac hypertrophy remains unclear. In this study, we investigated the regulatory mechanisms of mitochondrial protein homeostasis in pathological cardiac hypertrophy. Wildtype (WT) mice, knockout mice, and mice transfected with lentivirus overexpressing mouse C1q-tumor necrosis factor-related protein-3 (CTRP3) underwent transverse aortic constriction or sham surgery. After 4 weeks, cardiac function, mitochondrial function, and oxidative stress injury were examined. For mechanistic studies, neonatal rat cardiomyocytes were treated with small interfering RNA or overexpression plasmids for the relevant genes. CTRP3 overexpression attenuated transverse aortic constriction (TAC) induced pathological cardiac hypertrophy, mitochondrial dysfunction, and oxidative stress injury compared to that in WT mice. TAC or Ang II resulted in compensatory activation of UPRmt, but this was not sufficient to counteract pathologic cardiac hypertrophy. CTRP3 overexpression further induced activation of UPRmt during pathologic cardiac hypertrophy and thereby alleviated pathologic cardiac hypertrophy, whereas CTRP3 knockout or knockdown inhibited UPRmt. ATF5 was a key regulatory molecule of UPRmt, as ATF5 knockout prevented the cardioprotective effect of CTRP3 in TAC mice. In vitro, SIRT1 was identified as a possible downstream CTRP3 effector molecule, and SIRT1 knockout blocked the cardioprotective effects of CTRP3. Our results also suggest that ATF5 may be regulated by SIRT1. Our study demonstrates that CTRP3 activates UPRmt via the SIRT1/ATF5 axis under pathological myocardial hypertrophy, thus attenuating mitochondrial dysfunction and oxidative stress injury.
  13. Mol Med. 2024 Jan 22. 30(1): 15
      BACKGROUND: In heart failure (HF), mitochondrial dysfunction and metabolic remodeling lead to a reduction in energy productivity and aggravate cardiomyocyte injury. Supplementation with α-ketoglutarate (AKG) alleviated myocardial hypertrophy and fibrosis in mice with HF and improved cardiac insufficiency. However, the myocardial protective mechanism of AKG remains unclear. We verified the hypothesis that AKG improves mitochondrial function by upregulating NAD+ levels and activating silent information regulator 2 homolog 1 (SIRT1) in cardiomyocytes.METHODS: In vivo, 2% AKG was added to the drinking water of mice undergoing transverse aortic constriction (TAC) surgery. Echocardiography and biopsy were performed to evaluate cardiac function and pathological changes. Myocardial metabolomics was analyzed by liquid chromatography‒mass spectrometry (LC‒MS/MS) at 8 weeks after surgery. In vitro, the expression of SIRT1 or PINK1 proteins was inhibited by selective inhibitors and siRNA in cardiomyocytes stimulated with angiotensin II (AngII) and AKG. NAD+ levels were detected using an NAD test kit. Mitophagy and ferroptosis levels were evaluated by Western blotting, qPCR, JC-1 staining and lipid peroxidation analysis.
    RESULTS: AKG supplementation after TAC surgery could alleviate myocardial hypertrophy and fibrosis and improve cardiac function in mice. Metabolites of the malate-aspartate shuttle (MAS) were increased, but the TCA cycle and fatty acid metabolism pathway could be inhibited in the myocardium of TAC mice after AKG supplementation. Decreased NAD+ levels and SIRT1 protein expression were observed in heart of mice and AngII-treated cardiomyocytes. After AKG treatment, these changes were reversed, and increased mitophagy, inhibited ferroptosis, and alleviated damage in cardiomyocytes were observed. When the expression of SIRT1 was inhibited by a selective inhibitor and siRNA, the protective effect of AKG was suppressed.
    CONCLUSION: Supplementation with AKG can improve myocardial hypertrophy, fibrosis and chronic cardiac insufficiency caused by pressure overload. By increasing the level of NAD+, the SIRT-PINK1 and SIRT1-GPX4 signaling pathways are activated to promote mitophagy and inhibit ferroptosis in cardiomyocytes, which ultimately alleviates cardiomyocyte damage.
    Keywords:  Angiotensin II; Cardiac insufficiency; Ferroptosis; Mitophagy; NAD; SIRT1; Transverse aortic constriction; α-Ketoglutarate