bims-mimcad Biomed News
on Mitochondrial metabolism and cardiometabolic diseases
Issue of 2024‒01‒21
twelve papers selected by
Henver Brunetta, University of Guelph

  1. Proc Natl Acad Sci U S A. 2024 Jan 23. 121(4): e2308960121
      Metabolic disorders are characterized by an imbalance in muscle fiber composition, and a potential therapeutic approach involves increasing the proportion of oxidative muscle fibers. Prokineticin receptor 1 (PROKR1) is a G protein-coupled receptor that plays a role in various metabolic functions, but its specific involvement in oxidative fiber specification is not fully understood. Here, we investigated the functions of PROKR1 in muscle development to address metabolic disorders and muscular diseases. A meta-analysis revealed that the activation of PROKR1 upregulated exercise-responsive genes, particularly nuclear receptor subfamily 4 group A member 2 (NR4A2). Further investigations using ChIP-PCR, luciferase assays, and pharmacological interventions demonstrated that PROKR1 signaling enhanced NR4A2 expression by Gs-mediated phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in both mouse and human myotubes. Genetic and pharmacological interventions showed that the PROKR1-NR4A2 axis promotes the specification of oxidative muscle fibers in both myocytes by promoting mitochondrial biogenesis and metabolic function. Prokr1-deficient mice displayed unfavorable metabolic phenotypes, such as lower lean mass, enlarged muscle fibers, impaired glucose, and insulin tolerance. These mice also exhibited reduced energy expenditure and exercise performance. The deletion of Prokr1 resulted in decreased oxidative muscle fiber composition and reduced activity in the Prokr1-CREB-Nr4a2 pathway, which were restored by AAV-mediated Prokr1 rescue. In summary, our findings highlight the activation of the PROKR1-CREB-NR4A2 axis as a mechanism for increasing the oxidative muscle fiber composition, which positively impacts overall metabolic function. This study lays an important scientific foundation for the development of effective muscular-metabolic therapeutics with unique mechanisms of action.
    Keywords:  NR4A2; PROKR1; oxidative muscle fiber
  2. Mol Metab. 2024 Jan 11. pii: S2212-8778(24)00006-1. [Epub ahead of print] 101875
      OBJECTIVE: We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular disease CVD by maternal obesity.METHODS: Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release.
    RESULTS: miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes.
    CONCLUSIONS: These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.
    Keywords:  CVD biomarker; Cardiac metabolism; Developmental programming; Maternal obesity; Sex differences; miR-15b
  3. Diabetes. 2024 Feb 01. 73(2): 151-161
      Mitochondria undergo repeated cycles of fusion and fission that regulate their size and shape by a process known as mitochondrial dynamics. Numerous studies have revealed the importance of this process in maintaining mitochondrial health and cellular homeostasis, particularly in highly metabolically active tissues such as skeletal muscle and the heart. Here, we review the literature on the relationship between mitochondrial dynamics and the pathophysiology of type 2 diabetes and cardiovascular disease (CVD). Importantly, we emphasize divergent outcomes resulting from downregulating distinct mitochondrial dynamics proteins in various tissues. This review underscores compensatory mechanisms and adaptive pathways that offset potentially detrimental effects, resulting instead in improved metabolic health. Finally, we offer a perspective on potential therapeutic implications of modulating mitochondrial dynamics proteins for treatment of diabetes and CVD.ARTICLE HIGHLIGHTS:
  4. Cell Death Dis. 2024 Jan 17. 15(1): 58
      MitoKATP is a channel of the inner mitochondrial membrane that controls mitochondrial K+ influx according to ATP availability. Recently, the genes encoding the pore-forming (MITOK) and the regulatory ATP-sensitive (MITOSUR) subunits of mitoKATP were identified, allowing the genetic manipulation of the channel. Here, we analyzed the role of mitoKATP in determining skeletal muscle structure and activity. Mitok-/- muscles were characterized by mitochondrial cristae remodeling and defective oxidative metabolism, with consequent impairment of exercise performance and altered response to damaging muscle contractions. On the other hand, constitutive mitochondrial K+ influx by MITOK overexpression in the skeletal muscle triggered overt mitochondrial dysfunction and energy default, increased protein polyubiquitination, aberrant autophagy flux, and induction of a stress response program. MITOK overexpressing muscles were therefore severely atrophic. Thus, the proper modulation of mitoKATP activity is required for the maintenance of skeletal muscle homeostasis and function.
  5. Cell Rep Med. 2024 Jan 16. pii: S2666-3791(23)00601-8. [Epub ahead of print]5(1): 101372
      Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.
    Keywords:  GLUT4; bed rest; insulin sensitivity; lipotoxicity; metabolism; mitochondria; nutrient overload; physical inactivity; skeletal muscle
  6. Acta Physiol (Oxf). 2024 Jan 19. e14098
      AIM: A fraction of the Ca2+ released from the sarcoplasmic reticulum (SR) enters mitochondria to transiently increase its [Ca2+ ] ([Ca2+ ]mito ). This transient [Ca2+ ]mito increase may be important in the resynthesis of ATP and other processes. The resynthesis of ATP in the mitochondria generates heat that can lead to hypermetabolic reactions in muscle with ryanodine receptor 1 (RyR1) variants during the cyclic releasing of SR Ca2+ in the presence of a RyR1 agonist. We aimed to analyse whether the mitochondria of RYR1 variant muscle handles Ca2+ differently from healthy muscle.METHODS: We used confocal microscopy to track mitochondrial and cytoplasmic Ca2+ with fluorescent dyes simultaneously during caffeine-induced Ca2+ waves in extensor digitorum longus muscle fibres from healthy mice and mice heterozygous (HET) for a malignant hyperthermia-causative RYR1 variant.
    RESULTS: Mitochondrial Ca2+ -transient peaks trailed the peak of cytoplasmic Ca2+ transients by many seconds with [Ca2+ ]mito not increasing by more than 250 nM. A strong linear relationship between cytoplasmic Ca2+ and [Ca2+ ]mito amplitudes was observed in HET RYR1 KI fibres but not wild type (WT).
    CONCLUSION: Our results indicate that [Ca2+ ]mito change within the nM range during SR Ca2+ release. HET fibre mitochondria are more sensitive to SR Ca2+ release flux than WT. This may indicate post-translation modification differences of the mitochondrial Ca2+ uniporter between the genotypes.
    Keywords:  Ca2+; confocal; malignant hyperthermia; mitochondria; ryanodine receptor; skeletal muscle
  7. FASEB J. 2024 Feb;38(2): e23373
      Fatigue is a common phenomenon closely related to physical discomfort and numerous diseases, which is severely threatening the life quality and health of people. However, the exact mechanisms underlying fatigue are not fully characterized. Herein, we demonstrate that oxaloacetic acid (OAA), a crucial tricarboxylic acid cycle intermediate, modulates the muscle fatigue. The results showed that serum OAA level was positively correlated with fatigue state of mice. OAA-treated induced muscle fatigue impaired the exercise performance of mice. Mechanistically, OAA increased the c-Jun N-terminal kinase (JNK) phosphorylation and uncoupling protein 2 (UCP2) levels in skeletal muscle, which led to decreased energy substrate and enhanced glycolysis. On the other hand, OAA boosted muscle mitochondrial oxidative phosphorylation uncoupled with energy production. In addition, either UCP2 knockout or JNK inhibition totally reversed the effects of OAA on skeletal muscle. Therein, JNK mediated UCP2 activation with OAA-treated. Our studies reveal a novel role of OAA in skeletal muscle metabolism, which would shed light on the mechanism of muscle fatigue and weakness.
    Keywords:  JNK; UCP2; fatigue; oxaloacetic acid; skeletal muscle
  8. J Cell Biochem. 2024 Jan 16.
      Elevated circulating branched-chain amino acids (BCAAs) have been correlated with the severity of insulin resistance, leading to recent investigations that stimulate BCAA metabolism for the potential benefit of metabolic diseases. BT2 (3,6-dichlorobenzo[b]thiophene-2-carboxylic acid), an inhibitor of branched-chain ketoacid dehydrogenase kinase, promotes BCAA metabolism by enhancing BCKDH complex activity. The purpose of this report was to investigate the effects of BT2 on mitochondrial and glycolytic metabolism, insulin sensitivity, and de novo lipogenesis both with and without insulin resistance. C2C12 myotubes were treated with or without low or moderate levels of BT2 with or without insulin resistance. Western blot and quantitative real-time polymerase chain reaction were used to assess protein and gene expression, respectively. Mitochondrial, nuclei, and lipid content were measured using fluorescent staining and microscopy. Cell metabolism was assessed via oxygen consumption and extracellular acidification rate. Liquid chromatography-mass spectrometry was used to quantify BCAA media content. BT2 treatment consistently promoted mitochondrial uncoupling following 24-h treatment, which occurred largely independent of changes in expressional profiles associated with mitochondrial biogenesis, mitochondrial dynamics, BCAA catabolism, insulin sensitivity, or lipogenesis. Acute metabolic studies revealed a significant and dose-dependent effect of BT2 on mitochondrial proton leak, suggesting BT2 functions as a small-molecule uncoupler. Additionally, BT2 treatment consistently and dose-dependently reduced extracellular BCAA levels without altering expression of BCAA catabolic enzymes or pBCKDHa activation. BT2 appears to act as a small-molecule mitochondrial uncoupler that promotes BCAA utilization, though the interplay between these two observations requires further investigation.
    Keywords:  diabetes; insulin resistance; isoleucine; leucine; pAkt/Akt; skeletal muscle; valine
  9. Cardiovasc Res. 2024 Jan 17. pii: cvae014. [Epub ahead of print]
      AIMS: Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature fetal to adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and OXPHOS among others. Lysine demethylase 5 (KDM5) specifically demethylate H3K4me1/2/3 and have emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function.The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation.METHODS AND RESULTS: KDM5A, B, and C proteins were mainly expressed in the early post-natal stages and their expressions were progressively downregulated in the postnatal cardiomyocytes and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2,372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in the gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs.
    CONCLUSIONS: KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.
  10. EMBO J. 2024 Jan 15.
      Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria, while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and show a compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.
    Keywords:  Cristae Remodeling; Cryo-Electron Tomography; Cryo-Focused Ion Beam Milling; Mitochondrial Biology
  11. Am J Physiol Endocrinol Metab. 2024 Jan 17.
      Although the mechanisms underpinning short-term muscle disuse atrophy and associated insulin resistance remain to be elucidated, perturbed lipid metabolism might be involved. Our aim was to determine the impact of acipimox administration (i.e. pharmacologically lowering circulating non-esterified fatty acid (NEFA) availability) on muscle amino acid metabolism and insulin sensitivity during short-term disuse. Eighteen healthy individuals (age 22±1 years, BMI 24.0±0.6 kg·m-2) underwent 2 days forearm immobilization with placebo (PLA; n=9) or acipimox (ACI; 250 mg Olbetam; n=9) ingestion four times daily. Before and after immobilization, whole-body glucose disposal rate (GDR), forearm glucose uptake (FGU, i.e. muscle insulin sensitivity), and amino acid kinetics were measured under fasting and hyperinsulinaemic-hyperaminoacidaemic-euglycaemic clamp conditions using forearm balance and L-[ring-2H5]-phenylalanine infusions. Immobilization did not affect GDR but decreased insulin-stimulated FGU in both groups; more so in ACI (from 53±8 to 12±5 µmol·min-1) than PLA (from 52±8 to 38±13 µmol·min-1; P<0.05). In ACI only, and in contrast to our hypothesis, fasting arterialised NEFA concentrations were elevated to 1.3±0.1 mmol·L-1 post-immobilization (P<0.05), and fasting forearm NEFA balance increased ~4-fold (P=0.10). Forearm phenylalanine net balance decreased following immobilization (P<0.10), driven by increased Ra (from 32±5 (fasting) and 21±4 (clamp) pre-immobilization to 53±8 and 31±4 post-immobilization; P<0.05) while Rd was unaffected by disuse or acipimox. Disuse-induced insulin resistance is accompanied by early signs of negative net muscle amino acid balance, which is driven by accelerated muscle amino acid efflux. Acutely elevated NEFA availability worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.
    Keywords:  amino acid kinetics; disuse atrophy; insulin sensitivity; lipid; skeletal muscle
  12. Circ Res. 2024 Jan 19. 134(2): 162-164
    Keywords:  Editorials; blood platelets; hemostasis; lipids; megakaryocytes; mitochondria