bims-mimbat Biomed News
on Mitochondrial metabolism in brown adipose tissue
Issue of 2024–04–28
five papers selected by
José Carlos de Lima-Júnior, Washington University



  1. Cell. 2024 Apr 17. pii: S0092-8674(24)00346-5. [Epub ahead of print]
      Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.
    Keywords:  amino acid metabolism; bioenergetics; brown adipose tissue; diabetes; glucose homeostasis; insulin resistance; inter-organ communication; mitochondria; thermogenesis
    DOI:  https://doi.org/10.1016/j.cell.2024.03.030
  2. bioRxiv. 2024 Apr 17. pii: 2024.04.15.589506. [Epub ahead of print]
      Previous studies have been focused on lipid metabolism in peripheral tissues such as adipose tissues, while little or nothing is known about that in the brain. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue (WAT) lipid lipolysis and beiging, and brown adipose tissue (BAT) thermogenesis in mammals. However, it remains unclear whether and how the genes responsible for lipid metabolism in the brain are also under the control of cold acclimations. Here, we show that cold exposure predominantly increases the expressions of the genes encoding lipid lipolysis in the paraventricular nucleus of the hypothalamus (PVH). Mechanistically, we find that inactivation of neurons in the PVH blunts the cold-induced lipid peroxidation and lipolysis. Together, these findings indicate that lipid metabolism in the PVH is cold sensitive, potentially participating in cold regulations of energy metabolism.
    DOI:  https://doi.org/10.1101/2024.04.15.589506
  3. J Clin Invest. 2024 Apr 23. pii: e167371. [Epub ahead of print]
      Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation (OXPHOS). Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC) that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux towards lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.
    Keywords:  Metabolism; Mitochondria; Skeletal muscle
    DOI:  https://doi.org/10.1172/JCI167371
  4. PLoS Biol. 2024 Apr 26. 22(4): e3002602
      Mitofusins are large GTPases that trigger fusion of mitochondrial outer membranes. Similarly to the human mitofusin Mfn2, which also tethers mitochondria to the endoplasmic reticulum (ER), the yeast mitofusin Fzo1 stimulates contacts between Peroxisomes and Mitochondria when overexpressed. Yet, the physiological significance and function of these "PerMit" contacts remain unknown. Here, we demonstrate that Fzo1 naturally localizes to peroxisomes and promotes PerMit contacts in physiological conditions. These contacts are regulated through co-modulation of Fzo1 levels by the ubiquitin-proteasome system (UPS) and by the desaturation status of fatty acids (FAs). Contacts decrease under low FA desaturation but reach a maximum during high FA desaturation. High-throughput genetic screening combined with high-resolution cellular imaging reveal that Fzo1-mediated PerMit contacts favor the transit of peroxisomal citrate into mitochondria. In turn, citrate enters the TCA cycle to stimulate the mitochondrial membrane potential and maintain efficient mitochondrial fusion upon high FA desaturation. These findings thus unravel a mechanism by which inter-organelle contacts safeguard mitochondrial fusion.
    DOI:  https://doi.org/10.1371/journal.pbio.3002602
  5. Nature. 2024 Apr 24.
      Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.
    DOI:  https://doi.org/10.1038/s41586-024-07332-0