bims-mimbat Biomed News
on Mitochondrial metabolism in brown adipose tissue
Issue of 2023–12–03
sixteen papers selected by
José Carlos de Lima-Júnior, Washington University



  1. JCI Insight. 2023 Nov 28. pii: e172957. [Epub ahead of print]
      Interorgan crosstalk via secreted hormones and metabolites is a fundamental aspect of mammalian metabolic physiology. Beyond the highly specialized endocrine cells, peripheral tissues are emerging as an important source of metabolic hormones that influence energy and nutrient metabolism and contribute to disease pathogenesis. Neuregulin 4 (Nrg4) is a fat-derived hormone that protects mice from nonalcoholic steatohepatitis (NASH) and NASH-associated liver cancer by shaping hepatic lipid metabolism and the liver immune microenvironment. Despite its enriched expression in brown fat, whether NRG4 plays a role in thermogenic response and mediates the metabolic benefits of cold exposure remain unexplored. Here we show that Nrg4 expression in inguinal white adipose tissue (iWAT) is highly responsive to chronic cold exposure. Nrg4 deficiency impairs beige fat induction and renders mice more susceptible to diet-induced metabolic disorders under mild cold conditions. Using mice with adipocyte and hepatocyte-specific Nrg4 deletion, we reveal that adipose tissue-derived NRG4, but not hepatic NRG4, is essential for beige fat induction following cold acclimation. Furthermore, treatment with recombinant NRG4-Fc fusion protein promotes beige fat induction in iWAT and improves metabolic health in diet-induced obese mice. These findings highlight a critical role of NRG4 in mediating beige fat induction and preserving metabolic health under mild cold conditions.
    Keywords:  Adipose tissue; Endocrinology; Metabolism; Mouse models
    DOI:  https://doi.org/10.1172/jci.insight.172957
  2. J Clin Invest. 2023 Dec 01. pii: e176678. [Epub ahead of print]133(23):
      
    DOI:  https://doi.org/10.1172/JCI176678
  3. J Clin Invest. 2023 Dec 01. pii: e175282. [Epub ahead of print]133(23):
      
    DOI:  https://doi.org/10.1172/JCI175282
  4. bioRxiv. 2023 Nov 17. pii: 2023.11.17.566254. [Epub ahead of print]
      Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes. Short-term and adaptive responses to thermoneutral temperature (TN, ∼28°C) and room (laboratory) temperature (RT, ∼22°C) were studied in mice. This range of temperature does not cause detectable changes in circulating catecholamines or shivering and postabsorptive glucose homeostasis is maintained. We tested the hypothesis that a decrease in EE that occurs with TN causes insulin resistance and that this reduction in insulin action and EE is reversed upon short term (<12h) transition to RT. Insulin-stimulated glucose disposal (Rd) and tissue specific glucose uptake were assessed combining isotopic tracers with hyperinsulinemic-euglycemic clamps. EE and insulin-stimulated Rd are both decreased (∼50%) in TN-adapted vs RT-adapted mice. When RT-adapted mice are switched to TN, EE rapidly decreases and Rd is reduced by ∼50%. TN-adapted mice switched to RT exhibit a rapid increase in EE, but whole body insulin-stimulated Rd remains at the low rates of TN-adapted mice. In contrast, whole body glycolytic flux rose with EE. This higher EE occurs without increasing glucose uptake from the blood, but rather by diverting glucose from glucose storage to glycolysis. In addition to adaptations in insulin action, 'insulin-independent' glucose uptake in brown fat is exquisitely sensitive to thermoregulation. These results show that insulin action adjusts to non-stressful changes in ambient temperature to contribute to the support of body temperature homeostasis without compromising glucose homeostasis.
    Highlights: Energy expenditure and insulin-mediated glucose fluxes are reduced in thermoneutral (TN)-adapted mice versus room 'laboratory' temperature (RT)-adapted mice.Reduced insulin sensitivity manifests in TN mice regardless of whether they are TN-adapted or short-term transitioned from RT-adapted to TN.TN-adapted mice are resistant to the RT-induced increase in whole-body insulin sensitivity even though metabolic rate is increased.TN-adapted mice switched to RT meets increased thermogenic needs, not by increasing glucose uptake, but by partitioning a greater fraction of glucose from glycogen storage to glycolysis.Brown fat glucose uptake sensitively increases with RT and decreases with TN by an insulin-independent mechanism.
    DOI:  https://doi.org/10.1101/2023.11.17.566254
  5. J Physiol. 2023 Nov 29.
      Metabolic diseases such as obesity and diabetes are often thought to be caused by reduced energy expenditure, which poses a serious threat to human health. Cold exposure, exercise and caloric restriction have been shown to promote adipose tissue browning and thermogenesis. These physiological interventions increase energy expenditure and thus have emerged as promising strategies for mitigating metabolic disorders. However, that increased adipose tissue browning and thermogenesis elevate thermogenic consumption is not a reasonable explanation when humans and animals confront energetic challenges imposed by these interventions. In this review, we collected numerous results on adipose tissue browning and whitening and evaluated this bi-directional conversion of adipocytes from the perspective of energy homeostasis. Here, we propose a new interpretation of the role of adipose tissue browning under energetic challenges: increased adipose tissue browning and thermogenesis under energy challenge is not to enhance energy expenditure, but to reestablish a more economical thermogenic pattern to maintain the core body temperature. This can be achieved by enhancing the contribution of non-shivering thermogenesis (adipose tissue browning and thermogenesis) and lowering shivering thermogenesis and high intensity shivering. Consequently, the proportion of heat production in fat increases and that in skeletal muscle decreases, enabling skeletal muscle to devote more energy reserves to overcoming environmental stress.
    Keywords:  adipose tissue; browning; energetic challenges; skeletal muscle; whitening
    DOI:  https://doi.org/10.1113/JP285269
  6. Mol Metab. 2023 Nov 28. pii: S2212-8778(23)00174-6. [Epub ahead of print] 101840
       OBJECTIVE: Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance.
    METHODS: Central FFAR1 agonism and virogenic knockdown were performed in mice. Energy balance studies, infrared thermographic analysis of BAT and molecular analysis of the hypothalamus, brown adipose tissue (BAT), white adipose tissue (WAT) and liver were carried out.
    RESULTS: Pharmacological stimulation of FFAR1, using central administration of its agonist TUG-905 in diet-induced obese mice, decreases body weight and is associated with increased energy expenditure, BAT thermogenesis and browning of subcutaneous WAT (sWAT), as well as reduced AMP-activated protein kinase (AMPK) levels, inflammation, and endoplasmic reticulum (ER) stress in the hypothalamus. As FFAR1 is expressed in distinct hypothalamic neuronal subpopulations, we used an AAV vector expressing a shRNA to specifically knockdown Ffar1 in proopiomelanocortin (POMC) neurons of the arcuate nucleus of the hypothalamus (ARC) of obese mice. Our data showed that knockdown of Ffar1 in POMC neurons promoted hyperphagia and body weight gain. In parallel, these mice developed hepatic insulin resistance and steatosis.
    CONCLUSIONS: FFAR1 emerges as a new hypothalamic nutrient sensor regulating whole body energy balance. Moreover, pharmacological activation of FFAR1 could provide a therapeutic advance in the management of obesity and associated metabolic disorders.
    Keywords:  FFAR1/GPR40; Fatty acids; POMC; food intake; hypothalamus; obesity; thermogenesis
    DOI:  https://doi.org/10.1016/j.molmet.2023.101840
  7. Nat Commun. 2023 Nov 27. 14(1): 7649
      The identification and characterization of enzyme function is largely lacking behind the rapidly increasing availability of large numbers of sequences and associated high-resolution structures. This is often hampered by lack of knowledge on in vivo relevant substrates. Here, we present a case study of a high-resolution structure of an unusual orphan lipase in complex with an endogenous C18 monoacylglycerol ester reaction intermediate from the expression host, which is insoluble under aqueous conditions and thus not accessible for studies in solution. The data allowed its functional characterization as a prototypic long-chain monoacylglycerol lipase, which uses a minimal lid domain to position the substrate through a hydrophobic tunnel directly to the enzyme's active site. Knowledge about the molecular details of the substrate binding site allowed us to modulate the enzymatic activity by adjusting protein/substrate interactions, demonstrating the potential of our findings for future biotechnology applications.
    DOI:  https://doi.org/10.1038/s41467-023-43354-4
  8. bioRxiv. 2023 Nov 16. pii: 2023.11.15.567241. [Epub ahead of print]
      Mitochondrial ion channels are essential for energy production and cell survival. To avoid depleting the electrochemical gradient used for ATP synthesis, channels so far described in the mitochondrial inner membrane open only briefly, are highly ion-selective, have restricted tissue distributions, or have small currents. Here, we identify a mitochondrial inner membrane conductance that has strikingly different behavior from previously described channels. It is expressed ubiquitously, and transports cations non-selectively, producing a large, up to nanoampere-level, current. The channel does not lead to inner membrane uncoupling during normal physiology because it only becomes active at depolarized voltages. It is inhibited by external Ca 2+ , corresponding to the intermembrane space, as well as amiloride. This large, ubiquitous, non-selective, amiloride-sensitive (LUNA) current appears most active when expression of the mitochondrial calcium uniporter is minimal, such as in the heart. In this organ, we find that LUNA current magnitude increases two- to threefold in multiple mouse models of injury, an effect also seen in cardiac mitochondria from human patients with heart failure with reduced ejection fraction. Taken together, these features lead us to speculate that LUNA current may arise from an essential protein that acts as a transporter under physiological conditions, but becomes a channel under conditions of mitochondrial stress and depolarization.
    DOI:  https://doi.org/10.1101/2023.11.15.567241
  9. Mitochondrion. 2023 Nov 29. pii: S1567-7249(23)00093-4. [Epub ahead of print]
      Over the past decades, models of the organization of mitochondrial respiratory system have been controversial. The goal of this perspective is to assess this "conflict of models" by focusing on specific kinetic evidence in the two distinct segments of Coenzyme Q- and Cytochrome c-mediated electron transfer. Respiratory supercomplexes provide kinetic advantage by allowing a restricted diffusion of Coenzyme Q and Cytochrome c, and short-range interaction with their partner enzymes. In particular, electron transfer from NADH is compartmentalized by channeling of Coenzyme Q within supercomplexes, whereas succinate oxidation proceeds separately using the free Coenzyme Q pool. Previous evidence favoring Coenzyme Q random diffusion in the NADH-dependent electron transfer is due to downstream flux interference and misinterpretation of results. Indeed, electron transfer by complexes III and IV via Cytochrome c is less strictly dependent on substrate channeling in mammalian mitochondria. We briefly describe these differences and their physiological implications.
    Keywords:  Coenzyme Q or ubiquinone; Cytochrome c; channeling; diffusion; respiratory supercomplex
    DOI:  https://doi.org/10.1016/j.mito.2023.11.005
  10. J Physiol. 2023 Nov 28.
      Mitochondrial calcium concentration ([Ca2+ ]m ) plays an essential role in bioenergetics, and loss of [Ca2+ ]m homeostasis can trigger diseases and cell death in numerous cell types. Ca2+ uptake into mitochondria occurs via the mitochondrial Ca2+ uniporter (MCU), which is regulated by three mitochondrial Ca2+ uptake (MICU) proteins localized in the intermembrane space, MICU1, 2, and 3. We generated a mouse model of systemic MICU3 ablation and examined its physiological role in skeletal muscle. We found that loss of MICU3 led to impaired exercise capacity. When the muscles were directly stimulated there was a decrease in time to fatigue. MICU3 ablation significantly increased the maximal force of the KO muscle and altered fibre type composition with an increase in the ratio of type IIb (low oxidative capacity) to type IIa (high oxidative capacity) fibres. Furthermore, MICU3-KO mitochondria have reduced uptake of Ca2+ and increased phosphorylation of pyruvate dehydrogenase, indicating that KO animals contain less Ca2+ in their mitochondria. Skeletal muscle from MICU3-KO mice exhibited lower net oxidation of NADH during electrically stimulated muscle contraction compared with wild-type. These data demonstrate that MICU3 plays a role in skeletal muscle physiology by setting the proper threshold for mitochondrial Ca2+ uptake, which is important for matching energy demand and supply in muscle. KEY POINTS: Mitochondrial calcium uptake is an important regulator of bioenergetics and cell death and is regulated by the mitochondrial calcium uniporter (MCU) and three calcium sensitive regulatory proteins (MICU1, 2 and 3). Loss of MICU3 leads to impaired exercise capacity and decreased time to skeletal muscle fatigue. Skeletal muscle from MICU3-KO mice exhibits a net oxidation of NADH during electrically stimulated muscle contractions, suggesting that MICU3 plays a role in skeletal muscle physiology by matching energy demand and supply.
    Keywords:  MICU3; calcium uptake; skeletal muscle
    DOI:  https://doi.org/10.1113/JP284894
  11. Reproduction. 2023 Nov 01. pii: REP-23-0229. [Epub ahead of print]
      Mitochondrial uncoupling proteins (UCPs) are mitochondrial channels responsible for the transport of protons and small molecular substrates across the inner mitochondrial membrane. Altered UCPs expression or function are commonly associated with mitochondrial dysfunction and increased oxidative stress, which are both known causes of male infertility. However, UCPs expression and function in the human testis remains to be characterized. This study aimed to assess the UCP homologs (UCP1-6) expression and function in primary cultures of human Sertoli cells (hSCs). We identified the mRNA expression of all UCP homologs (UCP1-6) and protein expression of UCP1, UCP2, and UCP3 in hSCs. UCPs inhibition by genipin for 24 h decreased hSCs proliferation without causing cytotoxicity (n = 6). Surprisingly, the prolonged UCPs inhibition for 24 h decreased mitochondrial membrane potential, oxygen consumption rate (OCR), and endogenous ROS production. The metabolism of hSCs was also affected as UCPs inhibition shifted their metabolism towards an increased pyruvate consumption. Taken together, these findings demonstrate that UCPs play a role as regulators of the mitochondrial function in hSCs, emphasizing their potential as targets in the study of male (in)fertility.
    DOI:  https://doi.org/10.1530/REP-23-0229
  12. Biochemistry. 2023 Dec 01.
      Outside of their involvement in energy production, mitochondria play a critical role for the cell through their access to a discrete pathway for fatty acid biosynthesis. Despite decades of study in bacterial fatty acid synthases (the putative evolutionary mitochondrial precursor), our understanding of human mitochondrial fatty acid biosynthesis remains incomplete. In particular, the role of the key carrier protein, human mitochondrial acyl carrier protein (mACP), which shuttles the substrate intermediates through the pathway, has not been well-studied in part due to challenges in protein expression and purification. Herein, we report a reliable method for recombinant Escherichia coli expression and purification of mACP. Fundamental characteristics, including substrate sequestration and chain-flipping activity, are demonstrated in mACP using solvatochromic response. This study provides an efficient approach toward understanding the fundamental protein-protein interactions of mACP and its partner proteins, ultimately leading to a molecular understanding of human mitochondrial diseases such as mitochondrial fatty acid oxidation deficiencies.
    DOI:  https://doi.org/10.1021/acs.biochem.3c00447
  13. Biophys Rep (N Y). 2023 Dec 13. 3(4): 100134
      The fluorescent benzothiazole dye thioflavin T (ThT) is widely used as a marker for protein aggregates, most commonly in the context of neurodegenerative disease research and diagnosis. Recently, this same dye was shown to indicate membrane potential in bacteria due to its cationic nature. This finding prompted a question whether ThT fluorescence is linked to the membrane potential in mammalian cells, which would be important for appropriate utilization of ThT in research and diagnosis. Here, we show that ThT localizes into the mitochondria of HeLa cells in a membrane-potential-dependent manner. Specifically, ThT colocalized in cells with the mitochondrial membrane potential indicator tetramethylrhodamine methyl ester (TMRM) and gave similar temporal responses as TMRM to treatment with a protonophore, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP). Additionally, we found that presence of ThT together with exposure to blue light (λ = 405 nm), but neither factor alone, caused depolarization of mitochondrial membrane potential. This additive effect of the concentration and blue light was recapitulated by a mathematical model implementing the potential-dependent distribution of ThT and its effect on mitochondrial membrane potential through photosensitization. These results show that ThT can act as a mitochondrial membrane potential indicator in mammalian cells, when used at low concentrations and with low blue light exposure. However, it causes dissipation of the mitochondrial membrane potential depending additively on its concentrations and blue light exposure. This conclusion motivates a re-evaluation of ThT's use at micromolar range in live-cell analyses and indicates that this dye can enable future studies on the potential connections between mitochondrial membrane potential dynamics and protein aggregation.
    DOI:  https://doi.org/10.1016/j.bpr.2023.100134
  14. J Agric Food Chem. 2023 Dec 01.
      In globally cultivated grapevines, low-temperature stress poses a persistent challenge. Although COLD1 is recognized as a cold receptor in rice, its function in grapevine cold signaling is unclear. Here, we identified VaCOLD1, a transmembrane protein from the cold-tolerant Vitis amurensis Rupr, which is primarily located on plasma and endoplasmic reticulum membranes. Broadly expressed across multiple tissues, VaCOLD1 responds to various environmental stresses, particularly to cold. Its promoter contains distinct hormone- and stress-responsive elements, with GUS assays confirming widespread expression in Arabidopsis thaliana. Validation of interaction between VaCOLD1 and VaGPA1, together with their combined expression in yeast and grape calli, notably improved cold endurance. Overexpression of VaCOLD1 enhances cold tolerance in Arabidopsis by strengthening the CBF-COR signaling pathway. This is achieved through shielding against osmotic disturbances and modifying the expression of ABA-mediated genes. These findings emphasize the critical role of the VaCOLD1-VaGPA1 complex in mediating the response to cold stress via the CBF-COR pathway.
    Keywords:  ABA; CBF-COR pathway; VaCOLD1; VaGPA1; Vitis amurensis; cold stress responses
    DOI:  https://doi.org/10.1021/acs.jafc.3c05101
  15. FEBS Open Bio. 2023 Nov 27.
      Mitochondrial carrier homologs 1 (MTCH1) and 2 (MTCH2) are orphan members of the mitochondrial transporter family SLC25. Human MTCH1 is also known as presenilin 1-associated protein, PSAP. MTCH2 is a receptor for tBid and is related to lipid metabolism. Both proteins have been recently described as protein insertases of the outer mitochondrial membrane. We have depleted Mtch in Drosophila and show here that mutant flies are unable to complete development, showing an excess of apoptosis during pupation; this observation was confirmed by RNAi in Schneider cells. These findings are contrary to what has been described in humans. We discuss the implications in view of recent reports concerning the function of these proteins.
    Keywords:  Drosophila; apoptosis; development; mitochondria; mitochondrial carrier homolog (MTCH)
    DOI:  https://doi.org/10.1002/2211-5463.13742