J Therm Biol. 2023 Sep 24. pii: S0306-4565(23)00260-7. [Epub ahead of print]117 103719
Both birds and mammals have important thermogenic capacities allowing them to maintain high body temperatures, i.e., 37 °C and 40 °C on average in mammals and birds, respectively. However, during periods of high locomotor activity, the energy released during muscular contraction can lead to muscle temperature reaching up to 43-44 °C. Mitochondria are responsible for producing the majority of ATP through cellular respiration and metabolizing different substrates, including carbohydrates and lipids, to generate ATP. A limited number of studies comparing avian and mammalian species showed preferential utilization of specific substrates for mitochondrial energy at different metabolic intensities, but authors always measured at body temperature. The present study evaluated mitochondrial respiration rates and OXPHOS coupling efficiencies at 37 °C, 40 °C and 43 °C associated with pyruvate/malate (carbohydrate metabolism) or palmitoyl-carnitine/malate (lipid metabolism) as substrates in pigeons (Columba livia) and rats (Rattus norvegicus), a well-known pair in scientific literature and for their similar body mass. The data show different hyperthermia-induced responses between the two species with (i) skeletal muscle mitochondria from rats being more sensitive to rising temperatures than in pigeons, and (ii) the two species having different substrate preferences during hyperthermia, with rats oxidizing preferentially carbohydrates and pigeons lipids. By analyzing the interplay between temperature and substrate utilization, we describe a means by which endotherms deal with extreme muscular temperatures to provide enough ATP to support energy demands.
Keywords: Endotherms; Mitochondrial respiration; Muscular temperature; Sensitivity; Substrates