bims-mimbat Biomed News
on Mitochondrial metabolism in brown adipose tissue
Issue of 2022‒08‒21
fifteen papers selected by
José Carlos de Lima-Júnior
University of California San Francisco

  1. Cell Metab. 2022 Aug 11. pii: S1550-4131(22)00310-2. [Epub ahead of print]
      Uncoupling protein 1 (UCP1)-mediated adaptive thermogenesis protects mammals against hypothermia and metabolic dysregulation. Whether and how mitochondrial calcium regulates this process remains unclear. Here, we show that mitochondrial calcium uniporter (MCU) recruits UCP1 through essential MCU regulator (EMRE) to form an MCU-EMRE-UCP1 complex upon adrenergic stimulation. This complex formation increases mitochondrial calcium uptake to accelerate the tricarboxylic acid cycle and supply more protons that promote uncoupled respiration, functioning as a thermogenic uniporter. Mitochondrial calcium uptake 1 (MICU1) negatively regulates thermogenesis probably through inhibiting thermogenic uniporter formation. Accordingly, the deletion of Mcu or Emre in brown adipocytes markedly impairs thermogenesis and exacerbates obesity and metabolic dysfunction. Remarkably, the enhanced assembly of the thermogenic uniporter via Micu1 knockout or expressing linked EMRE-UCP1 results in opposite phenotypes. Thus, we have uncovered a "thermoporter" that provides a driving force for the UCP1 operation in thermogenesis, which could be leveraged to combat obesity and associated metabolic disorders.
    Keywords:  UCP1; brown adipose tissue; metabolic dysfunction; mitochondrial calcium uniporter; obesity; thermogenesis
  2. Nature. 2022 Aug 17.
      Compelling evidence shows that brown and beige adipose tissue are protective against metabolic diseases1,2. PR domain-containing 16 (PRDM16) is a dominant activator of the biogenesis of beige adipocytes by forming a complex with transcriptional and epigenetic factors and is therefore an attractive target for improving metabolic health3-8. However, a lack of knowledge surrounding the regulation of PRDM16 protein expression hampered us from selectively targeting this transcriptional pathway. Here we identify CUL2-APPBP2 as the ubiquitin E3 ligase that determines PRDM16 protein stability by catalysing its polyubiquitination. Inhibition of CUL2-APPBP2 sufficiently extended the half-life of PRDM16 protein and promoted beige adipocyte biogenesis. By contrast, elevated CUL2-APPBP2 expression was found in aged adipose tissues and repressed adipocyte thermogenesis by degrading PRDM16 protein. Importantly, extended PRDM16 protein stability by adipocyte-specific deletion of CUL2-APPBP2 counteracted diet-induced obesity, glucose intolerance, insulin resistance and dyslipidaemia in mice. These results offer a cell-autonomous route to selectively activate the PRDM16 pathway in adipose tissues.
  3. Comp Biochem Physiol B Biochem Mol Biol. 2022 Aug 11. pii: S1096-4959(22)00082-3. [Epub ahead of print] 110794
      Transient receptor potential (TRP) channels, which can sense temperature, pressure and mechanical stimuli, were involved in many physiological and biochemical reactions. Whether thermosensitive TRP channels (Thermo-TRPs) are involved in thermoregulation in small mammals is still not clear. We measured the changes of thermo-TRPs at 4 °C, 23 °C and 30 °C in Brandt's voles (Lasiopodomys brandtii) to test the hypothesis that Thermo-TRPs are involved in cold-induced thermogenesis of brown adipose tissue (BAT) in small mammals. Results showed that air temperatures had no effect on body mass and rectal temperature, but the food intake and basal metabolic rate (BMR) in the 4 °C group were significantly higher than in the 30 °C group. Compared with 30 °C group, the protein contents of uncoupling protein 1(UCP1), TRP vanilloid 2 (TRPV2), TRP ankyrin 1 (TRPA1), TRP melastatin 2 (TRPM2), silent Information Regulator T1 (SIRT1), AMP-activated protein kinase (AMPK) and Calcium/calmodulin-dependent protein kinase II (CaMKII) in BAT increased significantly in 4 °C group, but there was no significant difference in the protein content of Thermo-TRPs in the hypothalamus among groups. Further, the expression of PRDM16 (PR domain containing 16) in inguinal white adipose tissue (iWAT) at 4 °C was significantly higher than that at 30 °C, but no difference was observed in the expression of other browning-related genes or TRPV2. In conclusion, TRP channels may participate in BAT thermoregulation through the CaMKII, AMPK, SIRT1 and UCP1 pathway in cold-acclimated Brandt's voles.
    Keywords:  Brandt's vole (Lasiopodomys brandtii); Brown adipose tissue; Cold acclimation; Thermo-TRPs; Thermoregulation
  4. Mol Metab. 2022 Aug 11. pii: S2212-8778(22)00141-7. [Epub ahead of print] 101572
      Adipogenesis is a complex process controlled by intrinsic and extrinsic factors that regulate preadipocyte proliferation, adipogenic capacity and maturation of metabolic function. Here we show that insulin and IGF-1 receptors are essential for mature adipocyte survival and that deletion of both IR and IGF1R specifically in fat using a tamoxifen inducible-AdipoQ-Cre (Ai-DKO) leads to rapid and severe loss of adipocytes in all depots, associated with a metabolic syndrome characterized by hypertriglyceridemia, hyperglycemia, hyperinsulinemia, fatty liver, and pancreatic beta cell proliferation. In this model, this pathological phenotype reverses over a few weeks, in large part, due to preadipocyte proliferation and adipose tissue regeneration. Incubation of preadipocytes with serum from the Ai-DKO mice in vitro stimulates cell proliferation, and this effect can be mimicked by conditioned media from liver slices of Ai-DKO mice, but not by media of cultured Ai-DKO adipocytes, indicating a hepatic origin of the growth factor. Proteomic analysis of serum reveals apolipoprotein C3 (APOC3), a protein secreted by liver, as one of the most upregulated proteins in the Ai-DKO mice. In vitro, purified and delipidated APOC3 stimulates preadipocyte proliferation, however, knockdown of hepatic APOC3 in vivo in Ai-DKO mice is not sufficient to block adipose regeneration. Thus, lipodystrophy is associated with presence of increased preadipocyte-stimulating growth factors in serum. Our study indicates that APOC3 is one contributing factor to preadipocyte proliferation, however, other still-unidentified circulating growth factors are also likely present in Ai-DKO mice. Identification of these factors may provide a new approach to regulation of adipose mass in health and disease.
    Keywords:  Adipogenesis; Apolipoprotein; Circulating growth factor; Inter-cellular crosstalk; Metabolic syndrome
  5. Sci Adv. 2022 Aug 19. 8(33): eabn8351
      Any change in the energetic cost of mammalian mastication will affect the net energy gain from foods. Although the energetic efficiency of masticatory effort is fundamental in understanding the evolution of the human masticatory system, nothing is known currently about the associated metabolic costs of chewing different items. Here, using respirometry and electromyography of the masseter muscle, we demonstrate that chewing by human subjects represents a measurable energy sink. Chewing a tasteless odorless gum elevates metabolic rate by 10 to 15% above basal levels. Energy expenditure increases with gum stiffness and is paid for by greater muscle recruitment. For modern humans, it is likely that mastication represents a small part of the daily energy budget. However, for our ancestors, before the onset of cooking and sophisticated food processing methods, the costs must have been relatively high, adding a previously unexplored energetic dimension to the interpretation of hominin dentofacial fossils.
  6. Cell Rep. 2022 Aug 16. pii: S2211-1247(22)01015-4. [Epub ahead of print]40(7): 111198
      The relationship between nutrient starvation and mitochondrial dynamics is poorly understood. We find that cells facing amino acid starvation display clear mitochondrial fusion as a means to evade mitophagy. Surprisingly, further supplementation of glutamine (Q), leucine (L), and arginine (R) did not reverse, but produced stronger mitochondrial hyperfusion. Interestingly, the hyperfusion response to Q + L + R was dependent upon mitochondrial fusion proteins Mfn1 and Opa1 but was independent of MTORC1. Metabolite profiling indicates that Q + L + R addback replenishes amino acid and nucleotide pools. Inhibition of fumarate hydratase, glutaminolysis, or inosine monophosphate dehydrogenase all block Q + L + R-dependent mitochondrial hyperfusion, which suggests critical roles for the tricarboxylic acid (TCA) cycle and purine biosynthesis in this response. Metabolic tracer analyses further support the idea that supplemented Q promotes purine biosynthesis by serving as a donor of amine groups. We thus describe a metabolic mechanism for direct sensing of cellular amino acids to control mitochondrial fusion and cell fate.
    Keywords:  CP: Cell biology; CP: Metabolism; Drp1; Mfn1; Mfn2; Opa1; amino acid sensing; arginine; dynamics; fusion; glutamine; hyperfusion; leucine; mitochondria; stable isotope tracer
  7. Nat Commun. 2022 Aug 17. 13(1): 4845
      Amino acid transporters play a key role controlling the flow of nutrients across the lysosomal membrane and regulating metabolism in the cell. Mutations in the gene encoding the transporter cystinosin result in cystinosis, an autosomal recessive metabolic disorder characterised by the accumulation of cystine crystals in the lysosome. Cystinosin is a member of the PQ-loop family of solute carrier (SLC) transporters and uses the proton gradient to drive cystine export into the cytoplasm. However, the molecular basis for cystinosin function remains elusive, hampering efforts to develop novel treatments for cystinosis and understand the mechanisms of ion driven transport in the PQ-loop family. To address these questions, we present the crystal structures of cystinosin from Arabidopsis thaliana in both apo and cystine bound states. Using a combination of in vitro and in vivo based assays, we establish a mechanism for cystine recognition and proton coupled transport. Mutational mapping and functional characterisation of human cystinosin further provide a framework for understanding the molecular impact of disease-causing mutations.
  8. J Biol Chem. 2022 Aug 10. pii: S0021-9258(22)00805-5. [Epub ahead of print] 102362
      The activity of protein phosphatase 2A (PP2A) is determined by the expression and localization of the regulatory B-subunits. PP2A-B56α is the dominant isoform of the B'-family in the heart. Its role in regulating the cardiac response to β-adrenergic stimulation is not yet fully understood. We therefore generated mice deficient in B56α to test the functional cardiac effects in response to catecholamine administration versus corresponding wild-type (WT) mice. We found the decrease in basal PP2A activity in hearts of knockout (KO) mice was accompanied by a counterregulatory increase in the expression of B' subunits (β and γ) and higher phosphorylation of sarcoplasmic reticulum (SR) Ca2+ regulatory and myofilament proteins. The higher phosphorylation levels were associated with enhanced intraventricular pressure and relaxation in catheterized KO mice. In contrast, at the cellular level, we detected depressed Ca2+ transient and sarcomere shortening parameters in KO mice at basal conditions. Consistently, the peak amplitude of the L-type Ca2+ current (LTCC) was reduced and the inactivation kinetics of ICaL were prolonged in KO cardiomyocytes. However, we show β-adrenergic stimulation resulted in a comparable peak amplitude of Ca2+ transients and myocellular contraction between KO and WT cardiomyocytes. Therefore, we propose higher isoprenaline-induced Ca2+ spark frequencies might facilitate the normalized Ca2+ signaling in KO cardiomyocytes. In addition, the application of isoprenaline was associated with unchanged LTCC parameters between both groups. Our data suggest an important influence of PP2A-B56α on the regulation of Ca2+ signaling and contractility in response to β-adrenergic stimulation in the myocardium.
    Keywords:  LTCC; PP2A-B56α; myocellular Ca(2+) handling; protein phosphorylation; β-adrenergic function
  9. Proc Natl Acad Sci U S A. 2022 Aug 23. 119(34): e2120157119
      Dynamic regulation of mitochondrial morphology provides cells with the flexibility required to adapt and respond to electron transport chain (ETC) toxins and mitochondrial DNA-linked disease mutations, yet the mechanisms underpinning the regulation of mitochondrial dynamics machinery by these stimuli is poorly understood. Here, we show that pyruvate dehydrogenase kinase 4 (PDK4) is genetically required for cells to undergo rapid mitochondrial fragmentation when challenged with ETC toxins. Moreover, PDK4 overexpression was sufficient to promote mitochondrial fission even in the absence of mitochondrial stress. Importantly, we observed that the PDK4-mediated regulation of mitochondrial fission was independent of its canonical function, i.e., inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Phosphoproteomic screen for PDK4 substrates, followed by nonphosphorylatable and phosphomimetic mutations of the PDK4 site revealed cytoplasmic GTPase, Septin 2 (SEPT2), as the key effector molecule that acts as a receptor for DRP1 in the outer mitochondrial membrane to promote mitochondrial fission. Conversely, inhibition of the PDK4-SEPT2 axis could restore the balance in mitochondrial dynamics and reinvigorates cellular respiration in mitochondrial fusion factor, mitofusin 2-deficient cells. Furthermore, PDK4-mediated mitochondrial reshaping limits mitochondrial bioenergetics and supports cancer cell growth. Our results identify the PDK4-SEPT2-DRP1 axis as a regulator of mitochondrial function at the interface between cellular bioenergetics and mitochondrial dynamics.
    Keywords:  OCR; dynamin-related protein 1; mitochondrial fission; pyruvate dehydrogenase kinase 4; septin 2
  10. Proc Natl Acad Sci U S A. 2022 Aug 23. 119(34): e2206129119
      The Amino Acid-Polyamine-Organocation (APC) transporter GadC contributes to the survival of pathogenic bacteria under extreme acid stress by exchanging extracellular glutamate for intracellular γ-aminobutyric acid (GABA). Its structure, determined in an inward-facing conformation at alkaline pH, consists of the canonical LeuT-fold with a conserved five-helix inverted repeat, thereby resembling functionally divergent transporters such as the serotonin transporter SERT and the glucose-sodium symporter SGLT1. However, despite this structural similarity, it is unclear if the conformational dynamics of antiporters such as GadC follow the blueprint of these or other LeuT-fold transporters. Here, we used double electron-electron resonance (DEER) spectroscopy to monitor the conformational dynamics of GadC in lipid bilayers in response to acidification and substrate binding. To guide experimental design and facilitate the interpretation of the DEER data, we generated an ensemble of structural models in multiple conformations using a recently introduced modification of AlphaFold2 . Our experimental results reveal acid-induced conformational changes that dislodge the Cterminus from the permeation pathway coupled with rearrangement of helices that enables isomerization between inward- and outward-facing states. The substrate glutamate, but not GABA, modulates the dynamics of an extracellular thin gate without shifting the equilibrium between inward- and outward-facing conformations. In addition to introducing an integrated methodology for probing transporter conformational dynamics, the congruence of the DEER data with patterns of structural rearrangements deduced from ensembles of AlphaFold2 models illuminates the conformational cycle of GadC underpinning transport and exposes yet another example of the divergence between the dynamics of different families in the LeuT-fold.
    Keywords:  acid resistance; amino acid transport; membrane protein biophysics; structure prediction
  11. Biochim Biophys Acta Biomembr. 2022 Aug 16. pii: S0005-2736(22)00170-5. [Epub ahead of print]1864(11): 184032
      Recently reported kinase-linked mild depolarization of mitochondria, which prevents the generation of the reactive oxygen species (ROS) and disappears in various organs of the old mice, has been assumed to represent a crucial component of the mitochondrial anti-aging program. To measure mitochondrial inner membrane potential (IMP), the authors used fluorescent probe safranin O+. It is widely accepted that the accumulation of such cationic probes in the mitochondrial matrix depends exclusively on IMP, thus completely ignoring the possibility of the outer membrane potential (OMP) generation. However, computational analysis performed in the presented work suggests that the kinase-linked generation of the positive OMP might take place under the described conditions, because the measured potential includes the algebraic sum of both IMP and OMP. Alternatively to the suggested mild depolarization of mitochondria, the reported experimental data might reflect mainly a change of the positive OMP generated by the VDAC-kinase complexes. We also demonstrate that the reported in the literature mitochondrial hyperpolarization induced by erastin (known to prevent VDAC-tubulin interactions) and the depolarization caused by the mitochondrial VDAC knockdowns in the cancer cells might actually represent a decrease or increase, respectively, of the magnitude of the kinase-linked positive OMP. This is consistent with our hypothesis that VDAC voltage gating by the kinase-linked metabolically-dependent OMP plays a very important physiological role in regulating the cell energy metabolism under normal and pathological conditions, in the maintenance of the cell death resistance and even in the genetic aging program.
    Keywords:  Mitochondria; Mitochondrial outer membrane; Outer membrane potential; VDAC; VDAC-hexokinase complexes
  12. Curr Biol. 2022 Aug 10. pii: S0960-9822(22)01209-X. [Epub ahead of print]
      Small poikilotherms such as the fruit fly Drosophila depend on absolute temperature measurements to identify external conditions that are above (hot) or below (cold) their preferred range and to react accordingly. Hot and cold temperatures have a different impact on fly activity and sleep, but the circuits and mechanisms that adjust behavior to specific thermal conditions are not well understood. Here, we use patch-clamp electrophysiology to show that internal thermosensory neurons located within the fly head capsule (the AC neurons1) function as a thermometer active in the hot range. ACs exhibit sustained firing rates that scale with absolute temperature-but only for temperatures above the fly's preferred ∼25°C (i.e., "hot" temperature). We identify ACs in the fly brain connectome and demonstrate that they target a single class of circadian neurons, the LPNs.2 LPNs receive excitatory drive from ACs and respond robustly to hot stimuli, but their responses do not exclusively rely on ACs. Instead, LPNs receive independent drive from thermosensory neurons of the fly antenna via a new class of second-order projection neurons (TPN-IV). Finally, we show that silencing LPNs blocks the restructuring of daytime "siesta" sleep, which normally occurs in response to persistent heat. Our previous work described a distinct thermometer circuit for cold temperature.3 Together, the results demonstrate that the fly nervous system separately encodes and relays absolute hot and cold temperature information, show how patterns of sleep and activity can be adapted to specific temperature conditions, and illustrate how persistent drive from sensory pathways can impact behavior on extended temporal scales.
    Keywords:  AC neurons; Drosophila; LPNs; circadian rhythms; clock neurons; daytime sleep; electrophysiology; sleep and activity; temperature; thermosensation
  13. Cell Rep. 2022 Aug 16. pii: S2211-1247(22)01021-X. [Epub ahead of print]40(7): 111204
      Electron transport chain (ETC) biogenesis is tightly coupled to energy levels and availability of ETC subunits. Complex III (CIII), controlling ubiquinol:ubiquinone ratio in ETC, is an attractive node for modulating ETC levels during metabolic stress. Here, we report the discovery of mammalian Co-ordinator of mitochondrial CYTB (COM) complexes that regulate the stepwise CIII biogenesis in response to nutrient and nuclear-encoded ETC subunit availability. The COMA complex, consisting of UQCC1/2 and membrane anchor C16ORF91, facilitates translation of CIII enzymatic core subunit CYTB. Subsequently, microproteins SMIM4 and BRAWNIN together with COMA subunits form the COMB complex to stabilize nascent CYTB. Finally, UQCC3-containing COMC facilitates CYTB hemylation and association with downstream CIII subunits. Furthermore, when nuclear CIII subunits are limiting, COMB is required to chaperone nascent CYTB to prevent OXPHOS collapse. Our studies highlight CYTB synthesis as a key regulatory node of ETC biogenesis and uncover the roles of microproteins in maintaining mitochondrial homeostasis.
    Keywords:  CP: Metabolism; CYTB; SEPs; SMIM4; UQCC1; UQCC2; complex III; electron transport chain; microproteins; nuclear-mitochondrial coordination; smORFs
  14. Nat Chem Biol. 2022 Aug 15.
      Ethanol and lactate are typical waste products of glucose fermentation. In mammals, glucose is catabolized by glycolysis into circulating lactate, which is broadly used throughout the body as a carbohydrate fuel. Individual cells can both uptake and excrete lactate, uncoupling glycolysis from glucose oxidation. Here we show that similar uncoupling occurs in budding yeast batch cultures of Saccharomyces cerevisiae and Issatchenkia orientalis. Even in fermenting S. cerevisiae that is net releasing ethanol, media 13C-ethanol rapidly enters and is oxidized to acetaldehyde and acetyl-CoA. This is evident in exogenous ethanol being a major source of both cytosolic and mitochondrial acetyl units. 2H-tracing reveals that ethanol is also a major source of both NADH and NADPH high-energy electrons, and this role is augmented under oxidative stress conditions. Thus, uncoupling of glycolysis from the oxidation of glucose-derived carbon via rapidly reversible reactions is a conserved feature of eukaryotic metabolism.
  15. Nat Commun. 2022 Aug 16. 13(1): 4812
      Production of high density lipoprotein (HDL) requires ATP-binding cassette transporter A1 (ABCA1) to drive phospholipid (PL) from the plasma membrane into extracellular apolipoprotein A-I. Here, we use simulations to show that domains of ABCA1 within the plasma membrane remove PL from the membrane's outer leaflet. In our simulations, after the lipid diffuses into the interior of ABCA1's outward-open cavity, PL extracted by the gateway passes through a ring-shaped domain, the annulus orifice, which forms the base of an elongated hydrophobic tunnel in the transporter's extracellular domain. Engineered mutations in the gateway and annulus strongly inhibit lipid export by ABCA1 without affecting cell-surface expression levels. Our finding that ABCA1 extracts lipid from the outer face of the plasma membrane and forces it through its gateway and annulus into an elongated hydrophobic tunnel contrasts with the alternating access model, which proposes that ABCA1 flops PL substrate from the inner leaflet to the outer leaflet of the membrane. Consistent with our model, ABCA1 lacks the charged amino acid residues in the transmembrane domain found in the floppase members of the ABC transporter family.