bims-mimbat Biomed News
on Mitochondrial metabolism in brown adipose tissue
Issue of 2022‒03‒13
nine papers selected by
José Carlos de Lima-Júnior
University of California San Francisco


  1. Int J Mol Sci. 2022 Feb 22. pii: 2406. [Epub ahead of print]23(5):
      Mitochondrial uncoupling protein 1 (UCP1) is the crucial mechanistic component of heat production in classical brown fat and the newly identified beige or brite fat. Thermogenesis inevitably comes at a high energetic cost and brown fat, ultimately, is an energy-wasting organ. A constrained strategy that minimizes brown fat activity unless obligate will have been favored during natural selection to safeguard metabolic thriftiness. Accordingly, UCP1 is constitutively inhibited and is inherently not leaky without activation. It follows that increasing brown adipocyte number or UCP1 abundance genetically or pharmacologically does not lead to an automatic increase in thermogenesis or subsequent metabolic consequences in the absence of a plausible route of concomitant activation. Despite its apparent obviousness, this tenet is frequently ignored. Consequently, incorrect conclusions are often drawn from increased BAT or brite/beige depot mass, e.g., predicting or causally linking beneficial metabolic effects. Here, we highlight the inherently inactive nature of UCP1, with a particular emphasis on the molecular brakes and releases of UCP1 activation under physiological conditions. These controls of UCP1 activity represent potential targets of therapeutic interventions to unlock constraints and efficiently harness the energy-expending potential of brown fat to prevent and treat obesity and associated metabolic disorders.
    Keywords:  adipocytes; beige/brite cells; brown fat; feedback mechanisms; lipolysis; molecular brakes; obesity; purine nucleotides; thermogenesis
    DOI:  https://doi.org/10.3390/ijms23052406
  2. BMC Genomics. 2022 Mar 07. 23(1): 186
      BACKGROUND: MicroRNAs (miRNAs) are a family of short non-coding RNA molecules and play important roles in various biological processes. However, knowledge of the expression profiles and function of miRNAs on the regulation of brown adipose tissue (BAT) thermogenesis remains largely unknown.RESULTS: In this study, we found that brown adipose tissue (BAT) existed within the perirenal fat at 1 day after birth (D1) and transferred into white adipose tissue (WAT) at 30 days after birth (D30) by UCP1 protein expression and immunohistochemistry analysis. After that, we performed RNA sequencing on six libraries of goat BAT and WAT. A total of 238 known miRNAs and 1834 goat novel miRNAs were identified. Moreover, 395 differentially expressed miRNAs including 167 up-regulated and 228 down-regulated miRNAs were obtained in BAT. For the known BAT enriched miRNA, 30 miRNAs were enriched in goat BAT but not in mouse BAT. In addition, miR-433 was enriched in goat BAT but not in mouse BAT. Gain- and loss-of-function experiments reveal that miR-433 reduced the lipid accumulation of brown adipocytes and decreased the expression of BAT marker and mitochondrial related genes. However, miR-433 had no effect on lipid accumulation and thermogenesis in white adipocytes. In addition, miR-433 inhibited the expression of MAPK8 by targeting to the 3'UTR of MAPK8 gene. These data demonstrate that miR-433 acts as a negative regulator in controlling brown adipocytes differentiation and thermogenesis.
    CONCLUSION: The present study provides a detailed miRNAs expression landscape in BAT and WAT. Furthermore, we found that miR-433, which was highly expressed on BAT had a negative regulatory function on the thermogenesis and adipogenesis in goat brown adipocytes. This study provides evidence for understanding the role of miRNAs in regulating BAT thermogenesis and energy expenditure in goats.
    Keywords:  Brown adipose tissue; Goat; Thermogenesis; miR-433; microRNA
    DOI:  https://doi.org/10.1186/s12864-022-08401-2
  3. Front Endocrinol (Lausanne). 2022 ;13 849877
      During the first month of postnatal life, adipose tissue depots of mice go through a drastic, but transient, remodeling process. Between postnatal days 10 and 20, several white fat depots display a strong and sudden surge in beige adipocyte emergence that reverts until day 30. At the same time, brown fat depots appear to undergo an opposite phenomenon. We comprehensively describe these events, their depot specificity and known environmental and genetic interactions, such as maternal diet, housing temperature and mouse strain. We further discuss potential mechanisms and plausible purposes, including the tempting hypothesis that postnatal transient remodeling creates a lasting adaptive capacity still detectable in adult animals. Finally, we propose postnatal adipose tissue remodeling as a model process to investigate mechanisms of beige adipocyte recruitment advantageous to cold exposure or adrenergic stimulation in its entirely endogenous sequence of events without external manipulation.
    Keywords:  beige adipocyte; brown adipose tissue (BAT); organ development; postnatal; white adipose tissue (WAT); white adipose tissue (WAT) browning
    DOI:  https://doi.org/10.3389/fendo.2022.849877
  4. Sci Rep. 2022 Mar 08. 12(1): 4112
      An investigation of new ways to activate brown adipose tissue (BAT) is highly valuable, as it is a possible tool for obesity prevention and treatment. The aim of our study was to evaluate the relationships between dietary intake and BAT activity. The study group comprised 28 healthy non-smoking males aged 21-42 years. All volunteers underwent a physical examination and 75-g OGTT and completed 3-day food intake diaries to evaluate macronutrients and fatty acid intake. Body composition measurements were assessed using DXA scanning. An FDG-18 PET/MR was performed to visualize BAT activity. Brown adipose tissue was detected in 18 subjects (67% normal-weight individuals and 33% overweight/obese). The presence of BAT corresponded with a lower visceral adipose tissue (VAT) content (p = 0.04, after adjustment for age, daily kcal intake, and DXA Lean mass). We noted significantly lower omega-6 fatty acids (p = 0.03) and MUFA (p = 0.02) intake in subjects with detected BAT activity after adjustment for age, daily average kcal intake, and DXA Lean mass, whereas omega-3 fatty acids intake was comparable between the two groups. BAT presence was positively associated with the concentration of serum IL-6 (p = 0.01) during cold exposure. Our results show that BAT activity may be related to daily omega-6 fatty acids intake.
    DOI:  https://doi.org/10.1038/s41598-022-08125-z
  5. Elife. 2022 Mar 07. pii: e73360. [Epub ahead of print]11
      Cholinergic and sympathetic counter-regulatory networks control numerous physiologic functions including learning/memory/cognition, stress responsiveness, blood pressure, heart rate and energy balance. As neurons primarily utilize glucose as their primary metabolic energy source, we generated mice with increased glycolysis in cholinergic neurons by specific deletion of the fructose-2,6-phosphatase protein TIGAR. Steady-state and stable isotope flux analyses demonstrated increased rates of glycolysis, acetyl-CoA production, acetylcholine levels and density of neuromuscular synaptic junction clusters with enhanced acetylcholine release. The increase in cholinergic signaling reduced blood pressure and heart rate with a remarkable resistance to cold-induced hypothermia. These data directly demonstrate that increased cholinergic signaling through the modulation of glycolysis has several metabolic benefits particularly to increase energy expenditure and heat production upon cold exposure.
    Keywords:  cell biology; mouse; neuroscience
    DOI:  https://doi.org/10.7554/eLife.73360
  6. Sci Rep. 2022 Mar 07. 12(1): 3693
      Both hyperthyroidism and elevated plasma branched chain amino acids (BCAA) are associated with insulin resistance. BCAA utilization and clearance relative to thyroid status changes remains unclear. We investigate amino acids changes, specifically BCAA, during the transition from hyperthyroidism to euthyroidism, and the impact of active brown adipose tissue (BAT) on the metabolic effects of BCAA. Newly diagnosed Graves' disease participants were recruited. Hyperthyroidism was treated via a titration dosing regimen of thionamide anti-thyroid drug to establish euthyroidism over 12-24 weeks. All underwent energy expenditure (EE) measurement within a chamber calorimeter, 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography/magnetic resonance (PET/MR) imaging and plasma amino acids measurement during hyperthyroidism and euthyroidism. PET BAT maximum standardized uptake value (SUVmax), SUVmean and MR supraclavicular fat fraction (FF) quantified BAT activity. Twenty-two patients completed the study. Plasma BCAA level was significantly reduced in BAT-positive but not in BAT-negative patients during the transition from hyperthyroidism to euthyroidism. Plasma valine but not leucine and isoleucine correlated positively with insulin and HOMA-IR in hyperthyroidism. Plasma valine, leucine and isoleucine correlated with insulin and HOMA-IR in euthyroidism. Plasma valine correlated with insulin and HOMA-IR in BAT-negative but not in BAT-positive participants in both hyperthyroid and euthyroid state. However, the change (i.e. decrease) in plasma valine concentration from hyperthyroid to euthyroid state was affected by BAT-status. BAT utilizes and promotes BCAA plasma clearance from hyperthyroid to euthyroid state. Active BAT can potentially reduce circulating BCAA and may help to ameliorate insulin resistance and improve metabolic health.Clinical trial registration: The trial was registered at clinicaltrials.gov as NCT03064542.
    DOI:  https://doi.org/10.1038/s41598-022-07701-7
  7. iScience. 2022 Mar 18. 25(3): 103941
      Maintenance of energy balance is essential for overall organismal health. Mammals have evolved complex regulatory mechanisms that control energy intake and expenditure. Traditionally, studies have focused on understanding the role of macronutrient physiology in energy balance. In the present study, we examined the role of the essential micronutrient iron in regulating energy balance. We found that a short course of dietary iron caused a negative energy balance resulting in a severe whole body wasting phenotype. This disruption in energy balance was because of impaired intestinal nutrient absorption. In response to dietary iron-induced negative energy balance, adipose triglyceride lipase (ATGL) was necessary for wasting of subcutaneous white adipose tissue and lipid mobilization. Fat-specific ATGL deficiency protected mice from fat wasting, but caused a severe cachectic response in mice when fed iron. Our work reveals a mechanism for micronutrient control of lipolysis that is necessary for regulating mammalian energy balance.
    Keywords:  Cellular physiology; Physiology
    DOI:  https://doi.org/10.1016/j.isci.2022.103941
  8. Acta Pharm Sin B. 2022 Feb;12(2): 990-993
      
    Keywords:  Beige adipocytes; Brown adipocytes; Metabolic inflammation; Obesity
    DOI:  https://doi.org/10.1016/j.apsb.2021.11.015