bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2024–01–28
twenty papers selected by
Gavin McStay, Liverpool John Moores University



  1. Mol Neurodegener. 2024 Jan 25. 19(1): 12
       BACKGROUND: Mitochondrial dysfunction and toxic protein aggregates have been shown to be key features in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease (PD). Functional analysis of genes linked to PD have revealed that the E3 ligase Parkin and the mitochondrial kinase PINK1 are important factors for mitochondrial quality control. PINK1 phosphorylates and activates Parkin, which in turn ubiquitinates mitochondrial proteins priming them and the mitochondrion itself for degradation. However, it is unclear whether dysregulated mitochondrial degradation or the toxic build-up of certain Parkin ubiquitin substrates is the driving pathophysiological mechanism leading to PD. The iron-sulphur cluster containing proteins CISD1 and CISD2 have been identified as major targets of Parkin in various proteomic studies.
    METHODS: We employed in vivo Drosophila and human cell culture models to study the role of CISD proteins in cell and tissue viability as well as aged-related neurodegeneration, specifically analysing aspects of mitophagy and autophagy using orthogonal assays.
    RESULTS: We show that the Drosophila homolog Cisd accumulates in Pink1 and parkin mutant flies, as well as during ageing. We observed that build-up of Cisd is particularly toxic in neurons, resulting in mitochondrial defects and Ser65-phospho-Ubiquitin accumulation. Age-related increase of Cisd blocks mitophagy and impairs autophagy flux. Importantly, reduction of Cisd levels upregulates mitophagy in vitro and in vivo, and ameliorates pathological phenotypes in locomotion, lifespan and neurodegeneration in Pink1/parkin mutant flies. In addition, we show that pharmacological inhibition of CISD1/2 by rosiglitazone and NL-1 induces mitophagy in human cells and ameliorates the defective phenotypes of Pink1/parkin mutants.
    CONCLUSION: Altogether, our studies indicate that Cisd accumulation during ageing and in Pink1/parkin mutants is a key driver of pathology by blocking mitophagy, and genetically and pharmacologically inhibiting CISD proteins may offer a potential target for therapeutic intervention.
    Keywords:  Ageing; Autophagy; CISD1; CISD2; Cisd; Mitochondria; Mitophagy; Neurodegeneration; PINK1; Parkin; Parkinson’s disease
    DOI:  https://doi.org/10.1186/s13024-024-00701-3
  2. Autophagy. 2024 Jan 23.
      RAS is one of the most commonly mutated oncogenes associated with multiple cancer hallmarks. Notably, RAS activation induces intracellular reactive oxygen species (ROS) generation, which we previously demonstrated as a trigger for autophagy-associated execution of mutant KRAS-expressing cancer cells. Here we report that drug (merodantoin; C1)-induced activation of mutant KRAS promotes phospho-AKT S473-dependent ROS-mediated S616 phosphorylation and mitochondrial localization of DNM1L/DRP1 (dynamin 1 like) and cleavage of the fusion-associated protein OPA1 (OPA1 mitochondrial dynamin like GTPase). Interestingly, accumulation of the outer mitochondrial membrane protein VDAC1 (voltage dependent anion channel 1) is observed in mutant KRAS-expressing cells upon exposure to C1. Conversely, silencing VDAC1 abolishes C1-induced mitophagy, and gene knockdown of either KRAS, AKT or DNM1L rescues ROS-dependent VDAC1 accumulation and stability, thus suggesting an axis of mutant active KRAS-phospho-AKT S473-ROS-DNM1L-VDAC1 in mitochondrial morphology change and cancer cell execution. Importantly, we identified MTOR (mechanistic target of rapamycin kinsase) complex 2 (MTORC2) as the upstream mediator of AKT phosphorylation at S473 in our model. Pharmacological or genetic inhibition of MTORC2 abrogated C1-induced phosphorylation of AKT S473, ROS generation and mitophagy induction, as well as rescued tumor colony forming ability and migratory capacity. Finally, increase in thermal stability of KRAS, AKT and DNM1L were observed upon exposure to C1 only in mutant KRAS-expressing cells. Taken together, our work has unraveled a novel mechanism of selective targeting of mutant KRAS-expressing cancers via MTORC2-mediated AKT activation and ROS-dependent mitofission, which could have potential therapeutic implications given the relative lack of direct RAS-targeting strategies in cancer.
    Keywords:  AKT; DNM1L; KRAS; MTORC2; ROS; mitofission
    DOI:  https://doi.org/10.1080/15548627.2024.2307224
  3. F1000Res. 2021 ;10 606
      Background: Pathogenic variants in MFN2 cause Charcot-Marie-Tooth disease (CMT) type 2A (CMT2A) and are the leading cause of the axonal subtypes of CMT. CMT2A is characterized by predominantly distal motor weakness and muscle atrophy, with highly variable severity and onset age. Notably, some MFN2 variants can also lead to other phenotypes such as optic atrophy, hearing loss and lipodystrophy. Despite the clear link between MFN2 and CMT2A, our mechanistic understanding of how dysfunction of the MFN2 protein causes human disease pathologies remains incomplete. This lack of understanding is due in part to the multiple cellular roles of MFN2. Though initially characterized for its role in mediating mitochondrial fusion, MFN2 also plays important roles in mediating interactions between mitochondria and other organelles, such as the endoplasmic reticulum and lipid droplets. Additionally, MFN2 is also important for mitochondrial transport, mitochondrial autophagy, and has even been implicated in lipid transfer. Though over 100 pathogenic MFN2 variants have been described to date, only a few have been characterized functionally, and even then, often only for one or two functions. Method: Several MFN2-mediated functions were characterized in fibroblast cells from a patient presenting with cerebellar ataxia, deafness, blindness, and diffuse cerebral and cerebellar atrophy, who harbours a novel homozygous MFN2 variant, D414V, which is found in a region of the HR1 domain of MFN2 where few pathogenic variants occur. Results: We found evidence for impairment of several MFN2-mediated functions. Consistent with reduced mitochondrial fusion, patient fibroblasts exhibited more fragmented mitochondrial networks and had reduced mtDNA copy number. Additionally, patient fibroblasts had reduced oxygen consumption, fewer mitochondrial-ER contacts, and altered lipid droplets that displayed an unusual perinuclear distribution. Conclusion: Overall, this work characterizes D414V as a novel variant in MFN2 and expands the phenotypic presentation of MFN2 variants to include cerebellar ataxia.
    Keywords:  Ataxia; MFN2; Mitochondria; Mitochondrial Fusion
    DOI:  https://doi.org/10.12688/f1000research.53230.2
  4. Antioxidants (Basel). 2024 Jan 18. pii: 121. [Epub ahead of print]13(1):
      Deoxynivalenol (DON) is the one of the most common mycotoxins, widely detected in various original foods and processed foods. Tanshinone IIA (Tan IIA) is a fat-soluble diterpene quinone extracted from Salvia miltiorrhiza Bunge, which has multi-biological functions and pharmacological effects. However, whether Tan IIA has a protective effect against DON-induced intestinal toxicity is unknown. In this study, the results showed Tan IIA treatment could attenuate DON-induced IPEC-J2 cell death. DON increased oxidation product accumulation, decreased antioxidant ability and disrupted barrier function, while Tan IIA reversed DON-induced barrier function impairment and oxidative stress. Furthermore, Tan IIA dramatically improved mitochondrial function via mitochondrial quality control. Tan IIA could upregulate mitochondrial biogenesis and mitochondrial fusion as well as downregulate mitochondrial fission and mitochondrial unfolded protein response. In addition, Tan IIA significantly attenuated mitophagy caused by DON. Collectively, Tan IIA presented a potential protective effect against DON toxicity and the underlying mechanisms were involved in mitochondrial quality control-mediated mitophagy.
    Keywords:  IPEC-J2 cells; Tanshinone IIA; deoxynivalenol; mitochondrial quality control
    DOI:  https://doi.org/10.3390/antiox13010121
  5. J Cell Biol. 2024 Mar 04. pii: e202305087. [Epub ahead of print]223(3):
      CLPB is a mitochondrial intermembrane space AAA+ domain-containing disaggregase. CLPB mutations are associated with 3-methylglutaconic aciduria and neutropenia; however, the molecular mechanism underscoring disease and the contribution of CLPB substrates to disease pathology remains unknown. Interactions between CLPB and mitochondrial quality control (QC) factors, including PARL and OPA1, have been reported, hinting at dysregulation of organelle QC in disease. Utilizing proteomic and biochemical approaches, we show a stress-specific aggregation phenotype in a CLPB-null environment and define the CLPB substrate profile. We illustrate an interplay between intermembrane space proteins including CLPB, HAX1, HTRA2, and the inner membrane quality control proteins (STOML2, PARL, YME1L1; SPY complex), with CLPB deficiency impeding SPY complex function by virtue of protein aggregation in the intermembrane space. We conclude that there is an interdependency of mitochondrial QC components at the intermembrane space/inner membrane interface, and perturbations to this network may underscore CLPB disease pathology.
    DOI:  https://doi.org/10.1083/jcb.202305087
  6. Redox Biol. 2024 Jan 19. pii: S2213-2317(24)00020-X. [Epub ahead of print]70 103044
      Hyperglycemia increases the heart sensitivity to ischemia-reperfusion (IR), but the underlying cellular mechanisms remain unclear. Mitochondrial dynamics (the processes that govern mitochondrial morphology and their interactions with other organelles, such as the reticulum), has emerged as a key factor in the heart vulnerability to IR. However, it is unknown whether mitochondrial dynamics contributes to hyperglycemia deleterious effect during IR. We hypothesized that (i) the higher heart vulnerability to IR in hyperglycemic conditions could be explained by hyperglycemia effect on the complex interplay between mitochondrial dynamics, Ca2+ homeostasis, and reactive oxygen species (ROS) production; and (ii) the activation of DRP1, a key regulator of mitochondrial dynamics, could play a central role. Using transmission electron microscopy and proteomic analysis, we showed that the interactions between sarcoplasmic reticulum and mitochondria and mitochondrial fission were increased during IR in isolated rat hearts perfused with a hyperglycemic buffer compared with hearts perfused with a normoglycemic buffer. In isolated mitochondria and cardiomyocytes, hyperglycemia increased mitochondrial ROS production and Ca2+ uptake. This was associated with higher RyR2 instability. These results could contribute to explain the early mPTP activation in mitochondria from isolated hearts perfused with a hyperglycemic buffer and in hearts from streptozotocin-treated rats (to increase the blood glucose). DRP1 inhibition by Mdivi-1 during the hyperglycemic phase and before IR induction, normalized Ca2+ homeostasis, ROS production, mPTP activation, and reduced the heart sensitivity to IR in streptozotocin-treated rats. In conclusion, hyperglycemia-dependent DRP1 activation results in higher reticulum-mitochondria calcium exchange that contribute to the higher heart vulnerability to IR.
    Keywords:  Calcium homeostasis; Hyperglycemia; Ischemia-reperfusion; Mitochondria
    DOI:  https://doi.org/10.1016/j.redox.2024.103044
  7. Front Endocrinol (Lausanne). 2023 ;14 1281213
      Mitochondria plays a role in cell differentiation and apoptosis processes. Maintaining mitochondrial function is critical, and this involves various aspects of mitochondrial quality control such as protein homeostasis, biogenesis, dynamics, and mitophagy. Osteoporosis, a metabolic bone disorder, primarily arises from two factors: the dysregulation between lipogenic and osteogenic differentiation of aging bone marrow mesenchymal stem cells, and the imbalance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Mitochondrial quality control has the potential to mitigate or even reverse the effects. Among the Sirtuin family, consisting of seven Sirtuins (SIRT1-7), SIRT1-SIRT6 play a crucial role in maintaining mitochondrial quality control. Additionally, SIRT1, SIRT3, SIRT6, and SIRT7 are directly involved in normal bone development and homeostasis by modulating bone cells. However, the precise mechanism by which these Sirtuins exert their effects remains unclear. This article reviews the impact of various aspects of mitochondrial quality control on osteoporosis, focusing on how SIRT1, SIRT3, and SIRT6 can improve osteoporosis by regulating mitochondrial protein homeostasis, biogenesis, and mitophagy. Furthermore, we provide an overview of the current state of clinical and preclinical drugs that can activate Sirtuins to improve osteoporosis. Specific Sirtuin-activating compounds are effective, but further studies are needed. The findings of this study may offer valuable insights for future research on osteoporosis and the development of clinical prevention and therapeutic target strategies.
    Keywords:  bone; mitochondrial dysfunction; mitochondrial quality control; osteoporosis; sirtuins
    DOI:  https://doi.org/10.3389/fendo.2023.1281213
  8. Antioxid Redox Signal. 2024 Jan 22.
       AIM: Mitochondrial homeostasis is essential for maintaining redox balance. Besides canonical autophagy, Rab9-dependent alternative mitophagy is a crucial mechanism in metabolic cardiomyopathy. Here, we aim to investigate the role of alternative mitophagy and Beclin 1 haploinsufficiency (Beclin 1+/-) in high-fat diet (HFD)-induced metabolic cardiomyopathy.
    RESULTS: 24-week HFD impaired glucose tolerance and cardiomyocyte contraction in WT mice, both of which were rescued in Beclin 1+/- mice. Beclin 1 haploinsufficiency had little effect on the conventional autophagy mediators (ATG5, LC3II/LC3I) but further upregulated Rab9 expression, a marker of alternative autophagy, in response to HFD challenge. Furthermore, either the inhibition of alternative autophagy or Beclin 1 haploinsufficiency abolished palmitic acid-induced cardiomyocyte contractile anomalies. In vitro, palmitic acid over-activated mitophagy, resulting in decreased mitochondrial content in H9C2 cells. These aberrations were alleviated in cells deficient in alternative autophagy but not in cells deficient in conventional autophagy. Mechanistically, HFD promoted ROS production, activated Rab9-dependent alternative mitophagy, and inhibited mitochondrial biosynthesis. Beclin 1+/- rescued HFD-induced ROS overflow, mitochondrial biogenesis impairment, and prevented Rab9 translocation from the cytoplasm to the mitochondria, thereby inhibiting Rab9-mediated mitophagy over-activation.
    INNOVATION: For the first time, this study suggests that prolonged alternative mitophagy exacerbates chronic HFD-induced cardiac dysfunction and supports the protective role of Beclin 1 haploinsufficiency in metabolic cardiomyopathy. This provides additional evidence for a target-based pharmacological intervention.
    CONCLUSIONS: Beclin 1 haploinsufficiency protects against HFD-induced cardiac dysfunction by inhibiting Rab9-dependent alternative mitophagy and ROS production, while promoting mitochondrial biogenesis. Modulating Beclin 1 expression holds promise in preventing chronic HFD-related cardiomyopathy.
    DOI:  https://doi.org/10.1089/ars.2023.0399
  9. Antioxidants (Basel). 2024 Jan 08. pii: 81. [Epub ahead of print]13(1):
      (1) Background: Differentiated podocytes are particularly vulnerable to oxidative stress and cellular waste products. The disease-related loss of postmitotic podocytes is a direct indicator of renal disease progression and aging. Podocytes use highly specific regulated networks of autophagy and endocytosis that counteract the increasing number of damaged protein aggregates and help maintain cellular homeostasis. Here, we demonstrate that ARFIP2 is a regulator of autophagy and mitophagy in podocytes both in vitro and in vivo. (2) Methods: In a recent molecular regulatory network analysis of mouse glomeruli, we identified ADP-ribosylation factor-interacting protein 2 (Arfip2), a cytoskeletal regulator and cofactor of ATG9-mediated autophagosome formation, to be differentially expressed with age. We generated an Arfip2-deficient immortalized podocyte cell line using the CRISPR/Cas technique to investigate the significance of Arfip2 for renal homeostasis in vitro. For the in vivo analyses of Arfip2 deficiency, we used a mouse model of Streptozotozin-induced type I diabetes and investigated physiological data and (patho)histological (ultra)structural modifications. (3) Results: ARFIP2 deficiency in immortalized human podocytes impedes autophagy. Beyond this, ARFIP2 deficiency in human podocytes interferes with ATG9A trafficking and the PINK1-Parkin pathway, leading to the compromised fission of mitochondria and short-term increase in mitochondrial respiration and induction of mitophagy. In diabetic mice, Arfip2 deficiency deteriorates autophagy and leads to foot process effacement, histopathological changes, and early albuminuria. (4) Conclusions: In summary, we show that ARFIP2 is a novel regulator of autophagy and mitochondrial homeostasis in podocytes by facilitating ATG9A trafficking during PINK1/Parkin-regulated mitophagy.
    Keywords:  ADP-ribosylation factor-interacting protein 2; Arfip2; CKD; autophagy; diabetes; mitophagy; podocyte
    DOI:  https://doi.org/10.3390/antiox13010081
  10. J Pharmacol Sci. 2024 Feb;pii: S1347-8613(23)00076-2. [Epub ahead of print]154(2): 127-135
      Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.
    Keywords:  Cardiomyocytes; Cigarette smoke extracts (CSE); Mitochondrial fission; Myocardial senescence; Supersulfides
    DOI:  https://doi.org/10.1016/j.jphs.2023.12.008
  11. Front Pharmacol. 2023 ;14 1332567
      Mitochondria are critical for cellular energetic metabolism, intracellular signaling orchestration and programmed death regulation. Therefore, mitochondrial dysfunction is associated with various pathogeneses. The maintenance of mitochondrial homeostasis and functional recovery after injury are coordinated by mitochondrial biogenesis, dynamics and autophagy, which are collectively referred to as mitochondrial quality control. There is increasing evidence that mitochondria are important targets for melatonin to exert protective effects under pathological conditions. Melatonin, an evolutionarily conserved tryptophan metabolite, can be synthesized, transported and metabolized in mitochondria. In this review, we summarize the important role of melatonin in the damaged mitochondria elimination and mitochondrial energy supply recovery by regulating mitochondrial quality control, which may provide new strategies for clinical treatment of mitochondria-related diseases.
    Keywords:  autophagy; melatonin; mitochondria-related diseases; mitochondrial dynamics; oxidative phosphorylation
    DOI:  https://doi.org/10.3389/fphar.2023.1332567
  12. EMBO J. 2024 Jan 24.
      Miro proteins are universally conserved mitochondrial calcium-binding GTPases that regulate a multitude of mitochondrial processes, including transport, clearance, and lipid trafficking. The exact role of Miro in these functions is unclear but involves binding to a variety of client proteins. How this binding is operated at the molecular level and whether and how it is important for mitochondrial health, however, remains unknown. Here, we show that known Miro interactors-namely, CENPF, Trak, and MYO19-all use a similar short motif to bind the same structural element: a highly conserved hydrophobic pocket in the first calcium-binding domain of Miro. Using these Miro-binding motifs, we identified direct interactors de novo, including MTFR1/2/1L, the lipid transporters Mdm34 and VPS13D, and the ubiquitin E3-ligase Parkin. Given the shared binding mechanism of these functionally diverse clients and its conservation across eukaryotes, we propose that Miro is a universal mitochondrial adaptor coordinating mitochondrial health.
    Keywords:  AlphaFold; ERMES; Lipid Transport; Mitophagy; Organelle Transport
    DOI:  https://doi.org/10.1038/s44318-024-00028-1
  13. Curr Biol. 2024 Jan 22. pii: S0960-9822(23)01665-2. [Epub ahead of print]34(2): R59-R61
      Environmental stress induces mitochondrial retrograde signals that prompt protective responses in plants. The elusive mitochondrial signal has now been uncovered in a new study, which identifies formation of reactive oxygen species inside mitochondria as the key trigger of stress signals.
    DOI:  https://doi.org/10.1016/j.cub.2023.12.010
  14. Int J Biol Sci. 2024 ;20(3): 987-1003
      Fibroblast activation and proliferation is an essential phase in the progression of renal fibrosis. Despite the recognized significance of glutamine metabolism in cellular growth and proliferation, its precise pathophysiological relevance in renal fibrosis remains uncertain. Therefore, this study aims to investigate the involvement of glutamine metabolism in fibroblast activation and its possible mechanism. Our findings highlight the importance of glutamine metabolism in fibroblast activation and reveal that patients with severe fibrosis exhibit elevated serum glutamine levels and increased expression of kidney glutamine synthetase. Furthermore, the deprivation of glutamine metabolism in vitro and in vivo could inhibit fibroblast activation, thereby ameliorating renal fibrosis. It was also detected that glutamine metabolism is crucial for maintaining mitochondrial function and morphology. These effects may partially depend on the metabolic intermediate α-ketoglutaric acid. Moreover, glutamine deprivation led to upregulated mitochondrial fission in fibroblasts and the activation of the mammalian target of rapamycin / mitochondrial fission process 1 / dynamin-related protein 1 pathway. Thus, these results provide compelling evidence that the modulation of glutamine metabolism initiates the regulation of mitochondrial function, thereby facilitating the progression of renal fibrosis. Consequently, targeting glutamine metabolism emerges as a novel and promising avenue for therapeutic intervention and prevention of renal fibrosis.
    Keywords:  Fibroblasts; Glutamine; Mitochondria; Mitochondrial fission; Renal fibrosis; α-ketoglutaric acid
    DOI:  https://doi.org/10.7150/ijbs.89960
  15. Front Immunol. 2023 ;14 1289774
      DEK protein is highly expressed in asthma. However, the mechanism of DEK on mitophagy in asthma has not been fully understood. This study aims to investigate the role and mechanism of DEK in asthmatic airway inflammation and in regulating PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. PINK1-Parkin mitophagy, NLRP3 inflammasome, and apoptosis were examined after gene silencing or treatment with specific inhibitors (MitoTEMPO, MCC950, and Ac-DEVD-CHO) in house dust mite (HDM) or recombinant DEK (rmDEK)-induced WT and DEK-/- asthmatic mice and BEAS-2B cells. The regulatory role of DEK on ATAD3A was detected using ChIP-sequence and co-immunoprecipitation. rmDEK promoted eosinophil recruitment, and co-localization of TOM20 and LC3B, MFN1 and mitochondria, LC3B and VDAC, and ROS generation, reduced protein level of MnSOD in HDM induced-asthmatic mice. Moreover, rmDEK also increased DRP1 expression, PINK1-Parkin-mediated mitophagy, NLRP3 inflammasome activation, and apoptosis. These effects were partially reversed in DEK-/- mice. In BEAS-2B cells, siDEK diminished the Parkin, LC3B, and DRP1 translocation to mitochondria, mtROS, TOM20, and mtDNA. ChIP-sequence analysis showed that DEK was enriched on the ATAD3A promoter and could positively regulate ATAD3A expression. Additionally, ATAD3A was highly expressed in HDM-induced asthma models and interacted with DRP1, and siATAD3A could down-regulate DRP1 and mtDNA-mediated mitochondrial oxidative damage. Conclusively, DEK deficiency alleviates airway inflammation in asthma by down-regulating PINK1-Parkin mitophagy, NLRP3 inflammasome activation, and apoptosis. The mechanism may be through the DEK/ATAD3A/DRP1 signaling axis. Our findings may provide new potential therapeutic targets for asthma treatment.
    Keywords:  DEK; NLRP3 inflammasome; PINK1-Parkin; asthma; mitophagy
    DOI:  https://doi.org/10.3389/fimmu.2023.1289774
  16. J Diabetes Investig. 2024 Jan 23.
       AIMS/INTRODUCTION: Mitochondrial damage caused by oxidative stress is a main driver of pancreatic β-cell dysfunction in the pathogenesis of type 2 diabetes mellitus. Prohibitin2 (PHB2) is a vital inner mitochondrial membrane protein that participates in mitophagy to remove the damaged mitochondria. This study aimed to investigate the role and mechanisms of PHB2-mediated mitophagy in oxidative stress-induced pancreatic β-cell dysfunction.
    MATERIALS AND METHODS: PHB2 and mitophagy-related protein expression were analyzed by real-time polymerase chain reaction and western blotting in RINm5F cells treated with H2 O2 and islets of diabetic rats. Mitophagy was observed by mitochondrial and lysosome colocalization. RINm5F cells were transfected by phb2 siRNA or overexpression plasmid to explore the role of PHB2 in mitophagy of RINm5F cells. The mechanism of Nrf2 regulating PHB2 was explored by Nrf2 inhibitor and agonist.
    RESULTS: The expression of PHB2, mitophagy related protein PINK1, and Parkin were decreased in RINm5F cells incubated with H2 O2 and in islets of diabetic rats. Overexpression of PHB2 protected β-cells from oxidative stress by promoting mitophagy and inhibiting cell apoptosis, whereas transfection with PHB2 siRNA suppressed mitophagy. Furthermore, PHB2-mediated mitophagy induced by oxidative stress was through the Nrf2/PHB2 pathway in β-cells. Antioxidant NAC alleviated oxidative stress injury by promoting PHB2-mediated mitophagy.
    CONCLUSION: Our study suggested that PHB2-mediated mitophagy can protect β-cells from apoptosis via the Nrf2/PHB2 pathway under oxidative stress. Antioxidants may protect β-cell from oxidative stress by prompting PHB2-mediated mitophagy. PHB2-mediated mitophagy as a potential mechanism takes part in the oxidative stress induced β-cell injury.
    Keywords:  Oxidative stress; Prohibitin2; Type 2 diabetes mellitus
    DOI:  https://doi.org/10.1111/jdi.14147
  17. Int J Mol Sci. 2024 Jan 12. pii: 990. [Epub ahead of print]25(2):
      'Inner mitochondrial membrane peptidase 2 like' (IMMP2L) is a nuclear-encoded mitochondrial peptidase that has been conserved through evolutionary history, as has its target enzyme, 'mitochondrial glycerol phosphate dehydrogenase 2' (GPD2). IMMP2L is known to cleave the mitochondrial transit peptide from GPD2 and another nuclear-encoded mitochondrial respiratory-related protein, cytochrome C1 (CYC1). However, it is not known whether IMMP2L peptidase activates or alters the activity or respiratory-related functions of GPD2 or CYC1. Previous investigations found compelling evidence of behavioural change in the Immp2lKD-/- KO mouse, and in this study, EchoMRI analysis found that the organs of the Immp2lKD-/- KO mouse were smaller and that the KO mouse had significantly less lean mass and overall body weight compared with wildtype littermates (p < 0.05). Moreover, all organs analysed from the Immp2lKD-/- KO had lower relative levels of mitochondrial reactive oxygen species (mitoROS). The kidneys of the Immp2lKD-/- KO mouse displayed the greatest decrease in mitoROS levels that were over 50% less compared with wildtype litter mates. Mitochondrial respiration was also lowest in the kidney of the Immp2lKD-/- KO mouse compared with other tissues when using succinate as the respiratory substrate, whereas respiration was similar to the wildtype when glutamate was used as the substrate. When glycerol-3-phosphate (G3P) was used as the substrate for Gpd2, we observed ~20% and ~7% respective decreases in respiration in female and male Immp2lKD-/- KO mice over time. Together, these findings indicate that the respiratory-related functions of mGpd2 and Cyc1 have been compromised to different degrees in different tissues and genders of the Immp2lKD-/- KO mouse. Structural analyses using AlphaFold2-Multimer further predicted that the interaction between Cyc1 and mitochondrial-encoded cytochrome b (Cyb) in Complex III had been altered, as had the homodimeric structure of the mGpd2 enzyme within the inner mitochondrial membrane of the Immp2lKD-/- KO mouse. mGpd2 functions as an integral component of the glycerol phosphate shuttle (GPS), which positively regulates both mitochondrial respiration and glycolysis. Interestingly, we found that nonmitochondrial respiration (NMR) was also dramatically lowered in the Immp2lKD-/- KO mouse. Primary mouse embryonic fibroblast (MEF) cell lines derived from the Immp2lKD-/- KO mouse displayed a ~27% decrease in total respiration, comprising a ~50% decrease in NMR and a ~12% decrease in total mitochondrial respiration, where the latter was consistent with the cumulative decreases in substrate-specific mediated mitochondrial respiration reported here. This study is the first to report the role of Immp2l in enhancing Gpd2 structure and function, mitochondrial respiration, nonmitochondrial respiration, organ size and homeostasis.
    Keywords:  NAD+ biosynthesis; autism; behaviour; enzyme structure; glutathione; lean body mass; mitochondrial dynamics; mitochondrial respiration; mitochondrial size; non-mitochondrial respiration; organ mass
    DOI:  https://doi.org/10.3390/ijms25020990
  18. Mitochondrion. 2024 Jan 19. pii: S1567-7249(24)00005-9. [Epub ahead of print]75 101847
      Mitochondrial dynamics and autophagy play essential roles in normal cellular physiological activities, while abnormal mitochondrial dynamics and mitochondrial autophagy can cause cancer and related disorders. Abnormal mitochondrial dynamics usually occur in parallel with mitochondrial autophagy. Both have been reported to have a synergistic effect and can therefore complement or inhibit each other. Progress has been made in understanding the classical mitochondrial PINK1/Parkin pathway and mitochondrial dynamical abnormalities. Still, the mechanisms and regulatory pathways underlying the interaction between mitophagy and mitochondrial dynamics remain unexplored. Like other existing reviews, we review the molecular structure of proteins involved in mitochondrial dynamics and mitochondrial autophagy, and how their abnormalities can lead to the development of related diseases. We will also review the individual or synergistic effects of abnormal mitochondrial dynamics and mitophagy leading to cellular proliferation, differentiation and invasion. In addition, we explore the mechanisms underlying mitochondrial dynamics and mitochondrial autophagy to contribute to targeted and precise regulation of mitochondrial function. Through the study of abnormal mitochondrial dynamics and mitochondrial autophagy regulation mechanisms, as well as the role of early disease development, effective targets for mitochondrial function regulation can be proposed to enable accurate diagnosis and treatment of the associated disorders.
    Keywords:  Mitochondrial autophagy; Mitochondrial dynamics; Mitochondrial fission; Mitochondrial fusion; Orchestrating mechanism
    DOI:  https://doi.org/10.1016/j.mito.2024.101847
  19. Biomedicines. 2023 Dec 25. pii: 53. [Epub ahead of print]12(1):
      Mitochondria are essential organelles for energy production, calcium homeostasis, redox signaling, and other cellular responses involved in pulmonary vascular biology and disease processes. Mitochondrial homeostasis depends on a balance in mitochondrial fusion and fission (dynamics). Mitochondrial dynamics are regulated by a viable circadian clock. Hypoxia and nicotine exposure can cause dysfunctions in mitochondrial dynamics, increases in mitochondrial reactive oxygen species generation and calcium concentration, and decreases in ATP production. These mitochondrial changes contribute significantly to pulmonary vascular oxidative stress, inflammatory responses, contractile dysfunction, pathologic remodeling, and eventually pulmonary hypertension. In this review article, therefore, we primarily summarize recent advances in basic, translational, and clinical studies of circadian roles in mitochondrial metabolism in the pulmonary vasculature. This knowledge may not only be crucial to fully understanding the development of pulmonary hypertension, but also greatly help to create new therapeutic strategies for treating this devastating disease and other related pulmonary disorders.
    Keywords:  circadian molecules; fission; fusion; hypoxia; mitochondria; nicotine; pulmonary vascular dysfunction
    DOI:  https://doi.org/10.3390/biomedicines12010053
  20. Atherosclerosis. 2024 Jan 14. pii: S0021-9150(24)00010-8. [Epub ahead of print]390 117450
       BACKGROUND AND AIMS: New treatments are needed to prevent neointimal hyperplasia that contributes to post-angioplasty and stent restenosis in patients with coronary artery disease (CAD) and peripheral arterial disease (PAD). We investigated whether modulating mitochondrial function using mitochondrial division inhibitor-1 (Mdivi-1) could reduce post-vascular injury neointimal hyperplasia by metabolic reprogramming of macrophages from a pro-inflammatory to anti-inflammatory phenotype.
    METHODS AND RESULTS: In vivo Mdivi-1 treatment of Apoe-/- mice fed a high-fat diet and subjected to carotid-wire injury decreased neointimal hyperplasia by 68%, reduced numbers of plaque vascular smooth muscle cells and pro-inflammatory M1-like macrophages, and decreased plaque inflammation, endothelial activation, and apoptosis, when compared to control. Mdivi-1 treatment of human THP-1 macrophages shifted polarization from a pro-inflammatory M1-like to an anti-inflammatory M2-like phenotype, reduced monocyte chemotaxis and migration to CCL2 and macrophage colony stimulating factor (M-CSF) and decreased secretion of pro-inflammatory mediators. Finally, treatment of pro-inflammatory M1-type-macrophages with Mdivi-1 metabolically reprogrammed them to an anti-inflammatory M2-like phenotype by inhibiting oxidative phosphorylation and attenuating the increase in succinate levels and correcting the decreased levels of arginine and citrulline.
    CONCLUSIONS: We report that treatment with Mdivi-1 inhibits post-vascular injury neointimal hyperplasia by metabolic reprogramming macrophages towards an anti-inflammatory phenotype thereby highlighting the therapeutic potential of Mdivi-1 for preventing neointimal hyperplasia and restenosis following angioplasty and stenting in CAD and PAD patients.
    Keywords:  Inflammation; Mdivi-1; Mitochondrial fission; Monocytes/macrophages; Neointimal hyperplasia; Vascular restenosis
    DOI:  https://doi.org/10.1016/j.atherosclerosis.2024.117450