bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2022–05–29
fourteen papers selected by
Avinash N. Mukkala, University of Toronto



  1. J Cell Biol. 2022 Jul 04. pii: e202201071. [Epub ahead of print]221(7):
      The mitochondrial unfolded protein response (UPRmt) is dedicated to promoting mitochondrial proteostasis and is linked to extreme longevity. The key regulator of this process is the transcription factor ATFS-1, which, upon UPRmt activation, is excluded from the mitochondria and enters the nucleus to regulate UPRmt genes. However, the repair proteins synthesized as a direct result of UPRmt activation must be transported into damaged mitochondria that had previously excluded ATFS-1 owing to reduced import efficiency. To address this conundrum, we analyzed the role of the import machinery when the UPRmt was induced. Using in vitro and in vivo analysis of mitochondrial proteins, we surprisingly find that mitochondrial import increases when the UPRmt is activated in an ATFS-1-dependent manner, despite reduced mitochondrial membrane potential. The import machinery is upregulated, and an intact import machinery is essential for UPRmt-mediated lifespan extension. ATFS-1 has a weak mitochondrial targeting sequence (MTS), allowing for dynamic subcellular localization during the initial stages of UPRmt activation.
    DOI:  https://doi.org/10.1083/jcb.202201071
  2. MicroPubl Biol. 2022 ;2022
      The mitochondrial unfolded protein response (UPR mt ) is an important stress response that ensures the maintenance of mitochondrial homeostasis in response to various types of cellular stress. We previously described a genetic screen for Caenorhabditis elegans genes, which when inactivated cause UPR mt activation, and reported genes identified that encode mitochondrial proteins. We now report additional genes identified in the screen. Importantly, these include genes that encode non-mitochondrial proteins involved in processes such as the control of gene expression, post-translational modifications, cell signaling and cellular trafficking. Interestingly, we identified several genes that have been proposed to participate in the transfer of lipids between peroxisomes, ER and mitochondria, suggesting that lipid transfer between these organelles is essential for mitochondrial homeostasis. In conclusion, this study shows that the maintenance of mitochondrial homeostasis is not only dependent on mitochondrial processes but also relies on non-mitochondrial processes and pathways. Our results reinforce the notion that mitochondrial function and cellular function are intimately connected.
    DOI:  https://doi.org/10.17912/micropub.biology.000562
  3. Mitochondrion. 2022 May 24. pii: S1567-7249(22)00043-5. [Epub ahead of print]
      Mitochondria are dynamic organelles responsible for energy production and cell metabolism. Disorders in mitochondrial function impair tissue integrity and have been implicated in multiple human diseases. Rather than constrained in host cells, mitochondria were recently found to actively travel between cells through nanotubes or extracellular vesicles. Mitochondria transportation represents a key mechanism of intercellular communication implicated in metabolic homeostasis, immune response, and stress signaling. Here we reviewed recent progress in mitochondria transfer under physiological and pathological conditions. Specifically, tumor cells imported mitochondria from adjacent cells in the microenvironment which potentially modulated cancer progression. Intercellular mitochondria trafficking also inspired therapeutic intervention of human diseases with mitochondria transplantation. Artificial mitochondria, generated through mitochondria genome engineering or mitochondria-nucleus hybridization, further advanced our understanding of mitochondrial biology and its therapeutic potential. Innovative tools and animal models of mitochondria transplantation will assist the development of new therapies for mitochondrial dysfunction-related diseases.
    Keywords:  artificial mitochondria; intercellular nanotube; microvesicle; mitochondria genome editing; mitochondria transfer; mitochondria transplantation; synthetic biology
    DOI:  https://doi.org/10.1016/j.mito.2022.05.002
  4. Physiol Rep. 2022 May;10(10): e15230
      Muscle damage imposes stress on mitochondria resulting in mitochondrial fusion, fission, and mitophagy. Testosterone is a regulator of these processes. However, no study has examined the effect of sex-specific resistance exercise (RE)-induced hormonal response on mitochondrial dynamics and mitophagy after muscle damage in untrained men and women. Untrained men and women performed two sessions of 80 unilateral maximal eccentric knee extensions (ECC) followed by upper-body RE (ECC+RE) aimed to induce hormonal changes and maintain a similar lower body demands between conditions or 20 min seated rest (ECC+REST). Vastus lateralis samples were analyzed for gene and protein expression of OPA1, MFN1, DRP1, PINK1, and Parkin at baseline (BL), 12 and 24 h. Testosterone area under the curve was greater for ECC+RE than ECC+REST in men and was greater in men than women for both conditions. A significant time × sex × condition effect was found for Parkin protein expression. At 12 and 24 h, Parkin was lower for ECC + REST than ECC + RE for men; whereas, Parkin was increased at 24 h for women regardless of condition. A significant time effect was found for OPA1 protein expression increasing at 12 and 24 h. A significant time × sex × condition effects were found for MFN1, DRP1, and PINK1 gene expression with increases at 12 h in men for ECC + RE. A significant time × sex effect was found for OPA1 gene expression with a decrease at 12 h in men, and 12 h expression in men was lower than women. RE-induced hormonal changes promoted expression of fission, fusion, and mitophagy markers in men. With muscle damage, regardless of condition, expression of inner mitochondrial membrane fusion markers are promoted in both sexes; whereas, those for mitophagy were promoted in women but reduced in men.
    Keywords:  OPA1; Parkin; fission; fusion; resistance exercise; testosterone
    DOI:  https://doi.org/10.14814/phy2.15230
  5. Methods Mol Biol. 2022 ;2399 261-274
      Mitochondria are complex organelles with multifaceted roles in cell biology, acting as signaling hubs that implicate them in cellular physiology and pathology. Mitochondria are both the target and the origin of multiple signaling events, including redox processes and calcium signaling which are important for organellar function and homeostasis. One way to interrogate mitochondrial function is by live cell imaging. Elaborated approaches perform imaging of single mitochondrial dynamics in living cells and animals. Imaging mitochondrial signaling and function can be challenging due to the sheer number of mitochondria, and the speed, propagation, and potential short half-life of signals. Moreover, mitochondria are organized in functionally coupled interorganellar networks. Therefore, advanced analysis and postprocessing tools are needed to enable automated analysis to fully quantitate mitochondrial signaling events and decipher their complex spatiotemporal connectedness. Herein, we present a protocol for recording and automating analyses of signaling in neuronal mitochondrial networks.
    Keywords:  Computational wavelet analysis; Fluorescence microscopy; Grx1-roGFP2; Mitochondria; Mitochondrial cluster; Redox potential
    DOI:  https://doi.org/10.1007/978-1-0716-1831-8_12
  6. J Nanobiotechnology. 2022 May 23. 20(1): 242
       BACKGROUND: The exchange of mitochondria reportedly plays an important role in cell-cell communication in the central nervous system (CNS). The transfer of fragmented and dysfunctional astrocytic mitochondria into neurons and subsequent mitochondrial fusion often cause serious neuronal damage and cerebral ischaemic injury.
    METHODS: In this study, we prepared macrophage-derived exosomes laden with heptapeptide (Hep) as a dynamin-related protein-1 (Drp1)-fission 1 (Fis1) peptide inhibitor P110 to alleviate cerebral ischemia-reperfusion injury by reducing mitochondrial Drp1/Fis1 interaction-mediated astrocytic mitochondrial disorder and promoting the transfer of astrocyte-derived healthy mitochondria into neurons.
    RESULTS: The results demonstrated that Hep-loaded macrophage-derived exosomes (EXO-Hep) reduced mitochondrial damage in astrocytes by inhibiting the Drp1/Fis1 interaction after ischemia-reperfusion, ensuring the release of heathy astrocytic mitochondria and their subsequent transmission to neurons, alleviating mitochondria-mediated neuronal damage.
    CONCLUSION: EXO-Hep significantly mitigated ischemic injury in a model of transient middle cerebral artery occlusion (tMCAO) by reducing the infarct area and improving neurological performance during the process of cerebral ischemia-reperfusion.
    Keywords:  Astrocytes; Exosomes; Heptapeptide; Ischemic injury; Mitochondria
    DOI:  https://doi.org/10.1186/s12951-022-01425-6
  7. Dev Cell. 2022 May 15. pii: S1534-5807(22)00306-9. [Epub ahead of print]
      The changes that drive differentiation facilitate the emergence of abnormal cells that need to be removed before they contribute to further development or the germline. Consequently, in mice in the lead-up to gastrulation, ∼35% of embryonic cells are eliminated. This elimination is caused by hypersensitivity to apoptosis, but how it is regulated is poorly understood. Here, we show that upon exit of naive pluripotency, mouse embryonic stem cells lower their mitochondrial apoptotic threshold, and this increases their sensitivity to cell death. We demonstrate that this enhanced apoptotic response is induced by a decrease in mitochondrial fission due to a reduction in the activity of dynamin-related protein 1 (DRP1). Furthermore, we show that in naive pluripotent cells, DRP1 prevents apoptosis by promoting mitophagy. In contrast, during differentiation, reduced mitophagy levels facilitate apoptosis. Together, these results indicate that during early mammalian development, DRP1 regulation of mitophagy determines the apoptotic response.
    Keywords:  apoptosis; early development; embryonic stem cell differentiation; mitochondrial dynamics; mitophagy; pluripotency
    DOI:  https://doi.org/10.1016/j.devcel.2022.04.020
  8. Cell Death Differ. 2022 May 25.
      Binding of the mitochondrial chaperone TRAP1 to client proteins shapes bioenergetic and proteostatic adaptations of cells, but the panel of TRAP1 clients is only partially defined. Here we show that TRAP1 interacts with F-ATP synthase, the protein complex that provides most cellular ATP. TRAP1 competes with the peptidyl-prolyl cis-trans isomerase cyclophilin D (CyPD) for binding to the oligomycin sensitivity-conferring protein (OSCP) subunit of F-ATP synthase, increasing its catalytic activity and counteracting the inhibitory effect of CyPD. Electrophysiological measurements indicate that TRAP1 directly inhibits a channel activity of purified F-ATP synthase endowed with the features of the permeability transition pore (PTP) and that it reverses PTP induction by CyPD, antagonizing PTP-dependent mitochondrial depolarization and cell death. Conversely, CyPD outcompetes the TRAP1 inhibitory effect on the channel. Our data identify TRAP1 as an F-ATP synthase regulator that can influence cell bioenergetics and survival and can be targeted in pathological conditions where these processes are dysregulated, such as cancer.
    DOI:  https://doi.org/10.1038/s41418-022-01020-0
  9. Membranes (Basel). 2022 Apr 30. pii: 494. [Epub ahead of print]12(5):
      The mitochondrial permeability transition pore (mPTP) is a non-selective pore in the inner mitochondrial membrane (IMM) which causes depolarization when it opens under conditions of oxidative stress and high concentrations of Ca2+. In this study, a stochastic computational model was developed to better understand the dynamics of mPTP opening and closing associated with elevated reactive oxygen species (ROS) in cardiomyocytes. The data modeled are from "photon stress" experiments in which the fluorescent dye TMRM (tetramethylrhodamine methyl ester) is both the source of ROS (induced by laser light) and sensor of the electrical potential difference across the IMM. Monte Carlo methods were applied to describe opening and closing of the pore along with the Hill Equation to account for the effect of ROS levels on the transition probabilities. The amplitude distribution of transient mPTP opening events, the number of transient mPTP opening events per minute in a cell, the time it takes for recovery after transient depolarizations in the mitochondria, and the change in TMRM fluorescence during the transition from transient to permanent mPTP opening events were analyzed. The model suggests that mPTP transient open times have an exponential distribution that are reflected in TMRM fluorescence. A second multiple pore model in which individual channels have no permanent open state suggests that 5-10 mPTP per mitochondria would be needed for sustained mitochondrial depolarization at elevated ROS with at least 1 mPTP in the transient open state.
    Keywords:  Monte Carlo method; TMRM; computational model; depolarization; heart; mPTP; mitochondria; reactive oxygen species (ROS)
    DOI:  https://doi.org/10.3390/membranes12050494
  10. STAR Protoc. 2022 Jun 17. 3(2): 101401
      Mitochondrial dynamics play critical roles in both tissue homeostasis and somatic cell reprogramming. Here, we provide integrated guidance for assessing mitochondrial function and dynamics while reprogramming human fibroblasts via an integrated analysis approach. This protocol includes instructions for mitochondrial metabolic analysis in real time and flow cytometry-based assessment of mitochondrial mass and membrane potential. We also describe a protocol for quantification of mitochondrial network and key metabolites. For complete details on the use and execution of this protocol, please refer to Cha et al. (2021).
    Keywords:  Cell Biology; Cell culture; Cell-based Assays; Flow Cytometry/Mass Cytometry; Metabolism; Microscopy; Stem Cells
    DOI:  https://doi.org/10.1016/j.xpro.2022.101401
  11. J Cell Biochem. 2022 May 26.
      Mitochondria are dynamic eukaryotic organelles involved in a variety of essential cellular processes including the generation of adenosine triphosphate (ATP) and reactive oxygen species as well as in the control of apoptosis and autophagy. Impairments of mitochondrial functions lead to aging and disease. Previous work with the ascomycete Podospora anserina demonstrated that mitochondrial morphotype as well as mitochondrial ultrastructure change during aging. The latter goes along with an age-dependent reorganization of the inner mitochondrial membrane leading to a change from lamellar cristae to vesicular structures. Particularly from studies with yeast, it is known that besides the F1 Fo -ATP-synthase and the phospholipid cardiolipin also the "mitochondrial contact site and cristae organizing system" (MICOS) complex, existing of the Mic60- and Mic10-subcomplex, is essential for proper cristae formation. In the present study, we aimed to understand the mechanistic basis of age-related changes in the mitochondrial ultrastructure. We observed that MICOS subunits are coregulated at the posttranscriptional level. This regulation partially depends on the mitochondrial iAAA-protease PaIAP. Most surprisingly, we made the counterintuitive observation that, despite the loss of lamellar cristae and of mitochondrial impairments, the ablation of MICOS subunits (except for PaMIC12) leads to a pronounced lifespan extension. Moreover, simultaneous ablation of subunits of both MICOS subcomplexes synergistically increases lifespan, providing formal genetic evidence that both subcomplexes affect lifespan by different and at least partially independent pathways. At the molecular level, we found that ablation of Mic10-subcomplex components leads to a mitohormesis-induced lifespan extension, while lifespan extension of Mic60-subcomplex mutants seems to be controlled by pathways involved in the control of phospholipid homeostasis. Overall, our data demonstrate that both MICOS subcomplexes have different functions and play distinct roles in the aging process of P. anserina.
    Keywords:  MICOS; Podospora anserina; aging; cristae; mitochondria; mitohormesis
    DOI:  https://doi.org/10.1002/jcb.30278
  12. Mitochondrion. 2022 May 23. pii: S1567-7249(22)00047-2. [Epub ahead of print]
      Oocytes may carry mutations in their mitochondrial DNA (mtDNA) which affect fertility and embryo development leading to hereditary diseases or rejection. Mitochondrial replacement therapies (MRTs) such as polar body transfer, spindle transfer and pronuclear transfer, aim to change dysfunctional to normal mitochondria inside oocytes and zygotes resulting in healthier offspring. Even with promising results, MRTs techniques are invasive to oocytes and may negatively affect their viability and the success of the procedure. This article shows early evidence of the use of MitoCeption, a mitochondria transfer/transplant (AMT/T) technique to possibly induce the internalization of exogenous mitochondria in a dose-dependent manner to recipient oocytes in comparison to coincubation. By using human isolated mitochondria in a mix obtained from different donors we were able to identify their mtDNA in murine oocytes by qPCR. Fluorescence microscopy showed that exogenous and transferred mitochondria (MitoTracker ® Red) by MitoCeption were internalized in oocytes and zygotes (CellTracker® Green). After maintaining mitocepted zygotes to two-cell embryos, we transferred them to subrogate female mice and obtained healthy mice pups; however, without clear evidence of the maintenance of human mtDNA in the tissues of mice pups. These early results are puzzling, and they open the path to generate more research regarding the use of MitoCeption in comparison to coincubation in order to transfer mitochondria to oocytes using less invasive procedures.
    Keywords:  MitoCeption; Mitochondria replacement therapy (MRT); coincubation; heteroplasmy; mitochondrial disease; oocytes; xenogeneic transfer/transplant; zygotes
    DOI:  https://doi.org/10.1016/j.mito.2022.05.006
  13. Redox Biol. 2022 May 13. pii: S2213-2317(22)00107-0. [Epub ahead of print]53 102335
      Mild impairment of mitochondrial function has been shown to increase lifespan in genetic model organisms including worms, flies and mice. To better understand the mechanisms involved, we analyzed RNA sequencing data and found that genes involved in the mitochondrial thioredoxin system, trx-2 and trxr-2, are specifically upregulated in long-lived mitochondrial mutants but not other non-mitochondrial, long-lived mutants. Upregulation of trx-2 and trxr-2 is mediated by activation of the mitochondrial unfolded protein response (mitoUPR). While we decided to focus on the genes of the mitochondrial thioredoxin system for this paper, we identified multiple other antioxidant genes that are upregulated by the mitoUPR in the long-lived mitochondrial mutants including sod-3, prdx-3, gpx-6, gpx-7, gpx-8 and glrx-5. In exploring the role of the mitochondrial thioredoxin system in the long-lived mitochondrial mutants, nuo-6 and isp-1, we found that disruption of either trx-2 or trxr-2 significantly decreases their long lifespan, but has no effect on wild-type lifespan, indicating that the mitochondrial thioredoxin system is specifically required for their longevity. In contrast, disruption of the cytoplasmic thioredoxin gene trx-1 decreases lifespan in nuo-6, isp-1 and wild-type worms, indicating a non-specific detrimental effect on longevity. Disruption of trx-2 or trxr-2 also decreases the enhanced resistance to stress in nuo-6 and isp-1 worms, indicating a role for the mitochondrial thioredoxin system in protecting against exogenous stressors. Overall, this work demonstrates an important role for the mitochondrial thioredoxin system in both stress resistance and lifespan resulting from mild impairment of mitochondrial function.
    Keywords:  Aging; Antioxidant; C. elegans; Mitochondria; Reactive oxygen species; Thioredoxin
    DOI:  https://doi.org/10.1016/j.redox.2022.102335
  14. J Biol Chem. 2022 May 19. pii: S0021-9258(22)00490-2. [Epub ahead of print] 102050
      The double-stranded RNA-dependent protein kinase (PKR) activating protein (PACT), an RNA-binding protein (RNAbp) that is part of the RNA-induced silencing complex (RISC), plays a key role in microRNA (miR)-mediated translational repression. Previous studies showed that PACT regulates the expression of various miRs, selects the miR strand to be loaded onto RISC, and determines proper miR length. Apart from PACT's role in mediating the anti-viral response in immune cells, what PACT does in other cell types is unknown. Strikingly, it has also been shown that cold exposure leads to marked downregulation of PACT protein in mouse brown adipose tissue (BAT), where mitochondrial biogenesis and metabolism play a central role. Here, we show that PACT establishes a post-transcriptional brake on mitochondrial biogenesis (mitobiogenesis) by promoting the maturation of miR-181c, a key suppressor of mitobiogenesis that has been shown to target mitochondrial Complex IV subunit I (Mtco1) and Sirtuin 1 (Sirt1). Consistently, we found that a partial reduction in PACT expression is sufficient to enhance mitobiogenesis in brown adipocytes in culture as well as during BAT activation in mice. In conclusion, we demonstrate an unexpected role for PACT in the regulation of mitochondrial biogenesis and energetics in cells and BAT.
    DOI:  https://doi.org/10.1016/j.jbc.2022.102050