bims-mikwok Biomed News
on Mitochondrial quality control
Issue of 2021–03–07
thirteen papers selected by
Avinash N. Mukkala, University of Toronto



  1. Cell Tissue Res. 2021 Mar 03.
      Mitochondria play a key role in cellular energy production and contribute to cell metabolism, homeostasis, intracellular signalling and organelle's quality control, among other roles. Viable, respiratory-competent mitochondria exist also outside the cells. Such extracellular/exogenous mitochondria occur in the bloodstream, being released by platelets, activated monocytes and endothelial progenitor cells. In the nervous system, the cerebrospinal fluid contains mitochondria discharged by astrocytes. Various pathologies, including the cardiovascular and neurodegenerative diseases, are associated with mitochondrial dysfunction. A strategy to reverse dysfunction and restore cell normality is the transplantation of mitochondria (freshly isolated from a healthy tissue) into the zone at risk, such as the ischemic heart and/or damaged nervous tissue. The functional exogenous mitochondria will replace the harmed ones, ensuing cardioprotective and neuroprotective effects. The diversity of transplantation settings (in vitro, in animal models and patients) offered variable answers (including lack of consensus) on efficacy of this strategy. Therefore, a critical overview of the current and future trends in mitochondrial transplantation seems to be required. Here, we outline the recent developments on (i) extracellular mitochondria types and roles, (ii) transplantation protocols, (iii) mechanisms of mitochondrial incorporation, (iv) the benefit of extracellular mitochondria transplantation in human health and diseases and (v) open questions that deserve urgent answers.
    Keywords:  Ischemia reperfusion injury; Macropinocytosis; Mitochondrial dysfunction; Neurodegeneration; Parkinson’s disease
    DOI:  https://doi.org/10.1007/s00441-021-03428-5
  2. Sci Rep. 2021 Mar 04. 11(1): 5133
      The mitochondrial network continually undergoes events of fission and fusion. Under physiologic conditions, the network is in equilibrium and is characterized by the presence of both elongated and punctate mitochondria. However, this balanced, homeostatic mitochondrial profile can change morphologic distribution in response to various stressors. Therefore, it is imperative to develop a method that robustly measures mitochondrial morphology with high accuracy. Here, we developed a semi-automated image analysis pipeline for the quantitation of mitochondrial morphology for both in vitro and in vivo applications. The image analysis pipeline was generated and validated utilizing images of primary cortical neurons from transgenic mice, allowing genetic ablation of key components of mitochondrial dynamics. This analysis pipeline was further extended to evaluate mitochondrial morphology in vivo through immunolabeling of brain sections as well as serial block-face scanning electron microscopy. These data demonstrate a highly specific and sensitive method that accurately classifies distinct physiological and pathological mitochondrial morphologies. Furthermore, this workflow employs the use of readily available, free open-source software designed for high throughput image processing, segmentation, and analysis that is customizable to various biological models.
    DOI:  https://doi.org/10.1038/s41598-021-84528-8
  3. Cell Biol Int. 2021 Mar 06.
      Ischemia/reperfusion (I/R) is a well-known injury to the myocardium, but the mechanism involved remains elusive. In addition to the well-accepted apoptosis theory, autophagy was recently found to be involved in the process, exerting a dual role as protection in ischemia and detriment in reperfusion. Activation of autophagy is mediated by mitochondrial permeability transition pore (MPTP) opening during reperfusion. In our previous study, we showed that MPTP opening is regulated by VDAC1, a channel protein located in the outer membrane of mitochondria. Thus, up-regulation of VDAC1 expression is a possible trigger to cardiomyocyte autophagy via an unclear pathway. Here, we established an anoxia/reoxygenation (A/R) model in vitro to simulate the I/R process in vivo. At the end of A/R treatment, VDAC1, Beclin 1 and LC3-II/I were up-regulated, and autophagic vacuoles were increased in cardiomyocytes, which showed a connection of VDAC1 and autophagy development. These variation also led to ROS burst, mitochondrial dysfunction and aggravated apoptosis. Knockdown of VDAC1 by RNAi could alleviate the above-mentioned cellular damages. Additionally, the expression of PINK1 and Parkin were enhanced after A/R injury. Furthermore, Parkin was recruited to mitochondria from the cytosol, which suggested that the PINK1/Parkin autophagic pathway was activated during A/R. Nevertheless, the PINK1/Parkin pathway was effectively inhibited when VDAC1 was knocked-down. Taken together, the A/R-induced cardiomyocyte injury was mediated by VDAC1 up-regulation, which led to cell autophagy via the PINK1/Parkin pathway, and finally aggravated apoptosis. This article is protected by copyright. All rights reserved.
    Keywords:  PINK1/Parkin pathway; anoxia/reoxygenation; autophagy; cardiomyocytes; voltage-dependent anion channel 1
    DOI:  https://doi.org/10.1002/cbin.11583
  4. Dev Cell. 2021 Feb 24. pii: S1534-5807(21)00120-9. [Epub ahead of print]
      Mitochondria are essential organelles that execute and coordinate various metabolic processes in the cell. Mitochondrial dysfunction severely affects cell fitness and contributes to disease. Proper organellar function depends on the biogenesis and maintenance of mitochondria and its >1,000 proteins. As a result, the cell has evolved mechanisms to coordinate protein and organellar quality control, such as the turnover of proteins via mitochondria-associated degradation, the ubiquitin-proteasome system, and mitoproteases, as well as the elimination of mitochondria through mitophagy. Specific quality control mechanisms are engaged depending upon the nature and severity of mitochondrial dysfunction, which can also feed back to elicit transcriptional or proteomic remodeling by the cell. Here, we will discuss the current understanding of how these different quality control mechanisms are integrated and overlap to maintain protein and organellar quality and how they may be relevant for cellular and organismal health.
    Keywords:  ISR; MDVs; UPRmt; UPS; mitochondria; mitochondrial dynamics; mitophagy; mitoproteases
    DOI:  https://doi.org/10.1016/j.devcel.2021.02.009
  5. Metabolites. 2021 Feb 16. pii: 112. [Epub ahead of print]11(2):
      Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and exchange across the inner mitochondrial membrane. Here we review key cellular metabolic outputs of eukaryotic mitochondrial amino acid metabolism and discuss both known and unknown transporters involved. Furthermore, we discuss how utilization of compartmentalized amino acid metabolism functions in disease and physiological contexts. We examine how improved methods to study mitochondrial metabolism, define organelle metabolite composition, and visualize cellular gradients allow for a more comprehensive understanding of how transporters facilitate compartmentalized metabolism.
    Keywords:  amino acids; compartmentalization; cytosol; metabolomics; mitochondria; solute carriers; transporters
    DOI:  https://doi.org/10.3390/metabo11020112
  6. Bio Protoc. 2019 Dec 05. 9(23): e3450
      Mitochondria are double-membraned organelles responsible for several functions in the cell including energy production, calcium signaling, and cellular metabolism. An equilibrium between fission and fusion events of mitochondria is required for their proper functioning. Mitochondrial morphologies have been quantified in yeast using image processing modules such as MitoGraph and MitoLoc. However, the dynamics of mitochondrial fission and fusion have not been analyzed in these methods. Here, we present a method for measuring mitochondrial morphologies, as well as estimation of fission and fusion frequencies of mitochondria in individual fission yeast cells whose mitochondria are fluorescently-tagged or stained. The latter relies on counting of individual mitochondria upon signal filtering in each frame of a time-lapse. Taken together, we present a simple protocol for analyzing mitochondrial dynamics, which can easily be adopted to other model systems.
    Keywords:  Cell biology; Fluorescence microscopy; Live-cell imaging; Mitochondria; Mitochondrial dynamics; Mitochondrial fission; Mitochondrial fusion; Schizosaccharomyces pombe
    DOI:  https://doi.org/10.21769/BioProtoc.3450
  7. J Cardiovasc Pharmacol. 2021 Mar 01. 77(3): 378-385
       ABSTRACT: The calcium sensitizer levosimendan is indicated for the hemodynamic stabilization of patients with acutely decompensated heart failure and has been shown to be protective against reperfusion injury after myocardial infarction. However, affected forms of cell death and underlying signaling pathways remain controversial. Therefore, the aim of this study was to examine the influence of levosimendan preconditioning and postconditioning on anoxia/reoxygenation-induced apoptosis, necrosis, and autophagy in H9c2 myoblasts. To mimic conditions of myocardial ischemia/reperfusion, rat cardiac H9c2 myoblasts were exposed to anoxia/starvation, followed by reoxygenation/refeeding. Apoptosis, necrosis, autophagy, cell viability, survival signaling, and mitochondrial permeability transition pore (mPTP) opening were measured. Both, pharmacological preconditioning and postconditioning with levosimendan were capable to reduce apoptosis as well as necrosis in stressed H9c2 cells. However, preconditioning showed to have the stronger impact compared with postconditioning. Moreover, levosimendan preconditioning increased autophagy, suggesting enhanced repair processes initiated by the early presence of the drug. Underlying mechanisms differ between both interventions: Although both are associated with PI3/Akt activation and reduced mPTP opening, only postconditioning but not preconditioning depended on mKATP activation. This variation might indicate that a pharmacological treatment after the onset of reoxygenation at least in part directly addresses mitochondrial structures for protection. In conclusion, we demonstrate that both pharmacological preconditioning and postconditioning with levosimendan protect anoxia/reoxygenation-stressed cells but differ in the underlying mechanisms. These results are decisive to obtain more insights into the beneficial effects of levosimendan in the treatment of reperfusion-mediated damage.
    DOI:  https://doi.org/10.1097/FJC.0000000000000969
  8. Int J Mol Sci. 2021 Feb 12. pii: 1824. [Epub ahead of print]22(4):
      With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the "stem- less" approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.
    Keywords:  aging; cardiovascular; heart; mitochondria; senescence; stem cell; transplantation
    DOI:  https://doi.org/10.3390/ijms22041824
  9. EMBO J. 2021 Mar 05. e106283
      Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.
    Keywords:  ATAD3B; mitochondrial DNA; mitophagy; oxidative stress
    DOI:  https://doi.org/10.15252/embj.2020106283
  10. Mitochondrion. 2021 Mar 01. pii: S1567-7249(21)00013-1. [Epub ahead of print]
      The cerebrospinal fluid (CSF) has an important role in the transport of nutrients and signaling molecules to the central nervous and immune systems through its circulation along the brain and spinal cord tissues. The mitochondrial activity in the central nervous system (CNS) is essential in processes such as neuroplasticity, neural differentiation and production of neurotransmitters. Interestingly, extracellular and active mitochondria have been detected in the CSF where they act as a biomarker for the outcome of pathologies such as subarachnoid hemorrhage and delayed cerebral ischemia. Additionally, cell-free-circulating mitochondrial DNA (ccf-mtDNA) has been detected in both the CSF of healthy donors and in that of patients with neurodegenerative diseases. Key questions arise as there is still much debate regarding if ccf-mtDNA detected in CSF is associated with a diversity of active or inactive extracellular mitochondria coexisting in distinct pathologies. Additionally, it is of great scientific and medical importance to identify the role of extracellular mitochondria (active and inactive) in the CSF and the difference between them being damage associated molecular patterns (DAMPs) or factors that promote homeostasis. This review analyzes the different types of extracellular mitochondria, methods for their identification and their presence in CSF. Extracellular mitochondria in the CSF could have an important implication in health and disease, which may lead to the development of medical approaches that utilize mitochondria as therapeutic agents.
    Keywords:  Extracellular mitochondria types; cell-free-circulating DNA; cerebrospinal fluid; mitochondrial fragments; mitochondrial transfer/transplant; neurodegenerative diseases
    DOI:  https://doi.org/10.1016/j.mito.2021.02.006
  11. iScience. 2021 Feb 19. 24(2): 102119
      Remodeling of mitochondrial ultrastructure is a process that is critical for organelle physiology and apoptosis. Although the key players in this process-mitochondrial contact site and cristae junction organizing system (MICOS) and Optic Atrophy 1 (OPA1)-have been characterized, the mechanisms behind its regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for the maintenance of intermembrane connectivity through dynamic association with MICOS. This association is independent of OPA1, mediated via the MICOS subunit MIC60, and is important for stability of MICOS and the intermembrane contacts. The OMA1-MICOS relay is required for optimal bioenergetic output and apoptosis. Loss of OMA1 affects these activities; remarkably it can be alleviated by MICOS-emulating intermembrane bridge. Thus, OMA1-dependent ultrastructure support is required for mitochondrial architecture and bioenergetics under basal and stress conditions, suggesting a previously unrecognized role for OMA1 in mitochondrial physiology.
    Keywords:  Cell Biology; Molecular Biology; Organizational Aspects of Cell Biology
    DOI:  https://doi.org/10.1016/j.isci.2021.102119
  12. Mitochondrion. 2021 Mar 01. pii: S1567-7249(21)00030-1. [Epub ahead of print]
      The diversity and coexistence of extracellular mitochondria may have a key role in the maintenance of health and progression of disease. Studies report that active mitochondria can be found physiologically outside of cells and circulating in the blood without inducing an inflammatory response. In addition, inactive or harmed mitochondria have been recognized as activators of immune cells, as they play an essential role in diseases characterized by the metabolic deregulation of these cells, such as sepsis. In this review we analyze key aspects regarding the existence of a diversity of extracellular mitochondria, their coexistence in body fluids and their effects on various immune cells. Additionally, we introduce models of how extracellular mitochondria could be interacting to maintain health and affect disease prognosis. Unwrapped mitochondria (freeMitos) can exist as viable, active, inactive or harmed organelles. Mitochondria can also be found wrapped in a membrane (wrappedMitos) that may differ depending on the cell of origin. Mitochondrial fragments can also be present in various body fluids as DAMPs, as mtDNA enclosed in vesicles or as circulating-cell-free mtDNA (ccf-mtDNA). Interestingly, the great quantity of evidence regarding the levels of ccf-mtDNA and their correlation with aging and disease allows for the identification of the diversity, but not type, of extracellular mitochondria. The existence of a diversity of mitochondria and their effects on immune cells opens a new concept in the biomedical field towards the understanding of health, the progression of disease and the development of mitochondria as therapeutic agents.
    Keywords:  Extracellular mitochondria; biomarker; immunoregulation; inflammation; sepsis; therapeutic agent
    DOI:  https://doi.org/10.1016/j.mito.2021.02.014
  13. Nature. 2021 Mar 03.
      Symmetric cell division requires the even partitioning of genetic information and cytoplasmic contents between daughter cells. Whereas the mechanisms coordinating the segregation of the genome are well known, the processes that ensure organelle segregation between daughter cells remain less well understood1. Here we identify multiple actin assemblies with distinct but complementary roles in mitochondrial organization and inheritance in mitosis. First, we find a dense meshwork of subcortical actin cables assembled throughout the mitotic cytoplasm. This network scaffolds the endoplasmic reticulum and organizes three-dimensional mitochondrial positioning to ensure the equal segregation of mitochondrial mass at cytokinesis. Second, we identify a dynamic wave of actin filaments reversibly assembling on the surface of mitochondria during mitosis. Mitochondria sampled by this wave are enveloped within actin clouds that can spontaneously break symmetry to form elongated comet tails. Mitochondrial comet tails promote randomly directed bursts of movement that shuffle mitochondrial position within the mother cell to randomize inheritance of healthy and damaged mitochondria between daughter cells. Thus, parallel mechanisms mediated by the actin cytoskeleton ensure both equal and random inheritance of mitochondria in symmetrically dividing cells.
    DOI:  https://doi.org/10.1038/s41586-021-03309-5