Free Radic Biol Med. 2025 Mar 22. pii: S0891-5849(25)00179-0. [Epub ahead of print]
Conventional theories of oxidative stress have long focused on the deleterious consequences of excessive reactive oxygen species (ROS) formation. However, growing evidence reveals that an overload of reducing equivalents-termed reductive stress-may be equally pivotal in driving mitochondrial dysfunction and chronic disease. In this paradigm, abnormally high concentrations of NADH and NADPH create an electron "traffic jam" in the mitochondrial electron transport chain (ETC), leading to partial inhibition or reverse electron flow at upstream complexes. Paradoxically, this hyper-reduced environment promotes ROS generation by increasing electron leakage to molecular oxygen, thereby intensifying oxidative damage to lipids, proteins, and mitochondrial DNA. This review explores the intertwined nature of reductive and oxidative stress, showing how a surplus of reducing equivalents can potentiate metabolic derangements in conditions such as type 2 diabetes, nonalcoholic fatty liver disease, and neurodegenerative disorders. We discuss common drivers of reductive overload, including chronic hyperglycemia, high-fat diets, and specific dietary patterns-particularly those enriched in polyunsaturated omega-6 fatty acids-that inundate mitochondria with electron donors. We also highlight emerging evidence that targeted assessment of redox biomarkers (e.g., lactate:pyruvate, β-hydroxybutyrate:acetoacetate ratios) can provide clinically relevant indicators of reductive stress. Finally, we examine how novel therapeutic strategies can address the underlying reductive imbalance, from rational nutrient modulation to pharmacologic interventions that restore NAD+ levels or optimize ETC flux. Recognizing reductive stress as a critical inflection point in mitochondrial pathophysiology underscores the need for a refined redox framework, one that moves beyond conventional oxidative paradigms to embrace the full spectrum of redox dysregulation in chronic degenerative disease.