bims-mignad Biomed News
on Mitochondria galactose NAD
Issue of 2025–02–02
four papers selected by
Melisa Emel Ermert, Amsterdam UMC



  1. Biomolecules. 2024 Dec 31. pii: 38. [Epub ahead of print]15(1):
      Nicotinamide adenine dinucleotide (NAD) is a critical cofactor in mitochondrial energy production. The NADH/NAD+ ratio, reflecting the balance between NADH (reduced) and NAD+ (oxidized), is a key marker for the severity of mitochondrial diseases. We recently developed a streamlined LC-MS/MS method for the precise measurement of NADH and NAD+. Utilizing this technique, we quantified NADH and NAD+ levels in fibroblasts derived from pediatric patients and in a Leigh syndrome mouse model in which mitochondrial respiratory chain complex I subunit Ndufs4 is knocked out (KO). In patient-derived fibroblasts, NAD+ levels did not differ significantly from those of healthy controls (p = 0.79); however, NADH levels were significantly elevated (p = 0.04), indicating increased NADH reductive stress. This increase, observed despite comparable total NAD(H) levels between the groups, was attributed to elevated NADH levels. Similarly, in the mouse model, NADH levels were significantly increased in the KO group (p = 0.002), further suggesting that NADH elevation drives reductive stress. This precise method for NADH measurement is expected to outperform conventional assays, such as those for lactate, providing a simpler and more reliable means of assessing disease progression.
    Keywords:  LC-MS/MS; Leigh syndrome; NADH; Ndufs4-KO mice; mitochondrial diseases; reductive stress
    DOI:  https://doi.org/10.3390/biom15010038
  2. J Inflamm Res. 2025 ;18 1091-1106
       Purpose: Oral lichen planus (OLP) is a chronic, immune-mediated inflammatory disease involving T cells. Mitochondrial fission plays a crucial role in T cell fate through structural remodeling. Nicotinamide adenine dinucleotide (NAD+) regulates mitochondrial remodeling and function. This study explored the role of NAD+ in modulating mitochondrial fission and apoptosis in T cells under the OLP immune-inflammatory environment.
    Patients and Methods: T cells and plasma were isolated from peripheral blood. Mitochondrial morphology was characterized by transmission electron microscopy and Mito-Tracker staining. OLP plasma-exposed Jurkat T cells were infected with the Drp1 shRNA virus to investigate the role of mitochondrial fission in OLP T cell apoptosis. OLP T cells and OLP plasma-exposed Jurkat T cells were treated with either β-nicotinamide mononucleotide (an NAD+ synthesis precursor) or FK866 (an NAD+ synthesis inhibitor) to assess the effect of NAD+ regulation on mitochondrial remodeling and T cell apoptosis.
    Results: OLP T cells exhibited fragmented mitochondria with elevated dynamin-related protein 1 (Drp1) and reduced mitofusin 2 (Mfn2) expression, accompanied by decreased apoptosis. Drp1 knockdown in OLP plasma-exposed Jurkat T cells increased apoptosis and reduced proliferation. NAD+ levels were reduced in both OLP T cells and OLP plasma-treated Jurkat T cells, leading to enhanced mitochondrial fission, decreased mitochondrial membrane potential (MMP) and respiration function, and reduced apoptosis rate. β-nicotinamide mononucleotide supplementation restored NAD+ levels, suppressed mitochondrial fission, improved MMP, and promoted apoptosis in these cells.
    Conclusion: Reduced NAD+ levels in OLP T cells enhanced mitochondrial fission and contributed to decreased apoptosis. NAD+ supplementation mitigated these effects, suggesting a potential therapeutic strategy for restoring T cell homeostasis in OLP.
    Keywords:  T cells; mitochondria; nicotinamide adenine dinucleotide; oral lichen planus
    DOI:  https://doi.org/10.2147/JIR.S502273
  3. Cell Mol Biol Lett. 2025 Jan 09. 30(1): 3
       BACKGROUND: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors. Pathogenic loss-of-function variants in NAXE and NAXD lead to development of the neurometabolic disorders progressive, early-onset encephalopathy with brain edema and/or leukoencephalopathy (PEBEL)1 and PEBEL2, respectively.
    METHODS: To gain insights into the molecular disease mechanisms, we investigated the metabolic impact of NAXD deficiency in human cell models. Control and NAXD-deficient cells were cultivated under different conditions, followed by cell viability and mitochondrial function assays as well as metabolomic analyses without or with stable isotope labeling. Enzymatic assays with purified recombinant proteins were performed to confirm molecular mechanisms suggested by the cell culture experiments.
    RESULTS: HAP1 NAXD knockout (NAXDko) cells showed growth impairment specifically in a basal medium containing galactose instead of glucose. Surprisingly, the galactose-grown NAXDko cells displayed only subtle signs of mitochondrial impairment, whereas metabolomic analyses revealed a strong inhibition of the cytosolic, de novo serine synthesis pathway in those cells as well as in NAXD patient-derived fibroblasts. We identified inhibition of 3-phosphoglycerate dehydrogenase as the root cause for this metabolic perturbation. The NAD precursor nicotinamide riboside (NR) and inosine exerted beneficial effects on HAP1 cell viability under galactose stress, with more pronounced effects in NAXDko cells. Metabolomic profiling in supplemented cells indicated that NR and inosine act via different mechanisms that at least partially involve the serine synthesis pathway.
    CONCLUSIONS: Taken together, our study identifies a metabolic vulnerability in NAXD-deficient cells that can be targeted by small molecules such as NR or inosine, opening perspectives in the search for mechanism-based therapeutic interventions in PEBEL disorders.
    Keywords:  3-Phosphoglycerate dehydrogenase; Inborn errors of metabolism; Inosine; Metabolite damage and repair; NAD(P)H hydration; NAXD; Nicotinamide riboside; Serine biosynthesis
    DOI:  https://doi.org/10.1186/s11658-024-00681-8
  4. NPJ Aging. 2025 Jan 27. 11(1): 4
      Over the past five years, systemic NAD+ (nicotinamide adenine dinucleotide) decline has been accepted to be a key driving force of aging in the field of aging research. The original version of the NAD World concept was proposed in 2009, providing an integrated view of the NAD+-centric, systemic regulatory network for mammalian aging and longevity control. The reformulated version of the concept, the NAD World 2.0, was then proposed in 2016, emphasizing the importance of the inter-tissue communications between the hypothalamus and peripheral tissues including adipose tissue and skeletal muscle. There has been significant progress in our understanding of the importance of nicotinamide mononucleotide (NMN), a key NAD+ intermediate, and nicotinamide phosphoribosyltransferase (NAMPT), particularly extracellular NAMPT (eNAMPT). With these exciting developments, the further reformulated version of the concept, the NAD World 3.0, is now proposed, featuring multi-layered feedback loops mediated by NMN and eNAMPT for mammalian aging and longevity control.
    DOI:  https://doi.org/10.1038/s41514-025-00192-6