bims-miftum Biomed News
on Microfluidics and 3D tumor models
Issue of 2020–10–04
three papers selected by
Nidhi Menon, Virginia Tech



  1. Sci Rep. 2020 Sep 28. 10(1): 15915
      Three-dimensional (3D) spheroidal cell cultures are now recognised as better models of cancers as compared to traditional cell cultures. However, established 3D cell culturing protocols and techniques are time-consuming, manually laborious and often expensive due to the excessive consumption of reagents. Microfluidics allows for traditional laboratory-based biological experiments to be scaled down into miniature custom fabricated devices, where cost-effective experiments can be performed through the manipulation and flow of small volumes of fluid. In this study, we characterise a 3D cell culturing microfluidic device fabricated from a 3D printed master. HT29 cells were seeded into the device and 3D spheroids were generated and cultured through the perfusion of cell media. Spheroids were treated with 5-Fluorouracil for five days through continuous perfusion and cell viability was analysed on-chip at different time points using fluorescence microscopy and Lactate dehydrogenase (LDH) assay on the supernatant. Increasing cell death was observed in the HT29 spheroids over the five-day period. The 3D cell culturing microfluidic device described in this study, permits on-chip anti-cancer treatment and viability analysis, and forms the basis of an effective platform for the high-throughput screening of anti-cancer drugs in 3D tumour spheroids.
    DOI:  https://doi.org/10.1038/s41598-020-72952-1
  2. Adv Mater. 2020 Oct 01. e2002974
      Despite the complexity and structural sophistication that 3D organoid models provide, their lack of vascularization and perfusion limit the capability of these models to recapitulate organ physiology effectively. A microfluidic platform named IFlowPlate is engineered, which can be used to culture up to 128 independently perfused and vascularized colon organoids in vitro. Unlike traditional microfluidic devices, the vascularized organoid-on-chip device with an "open-well" design does not require any external pumping systems and allows tissue extraction for downstream analyses, such as histochemistry or even in vivo transplantation. By optimizing both the extracellular matrix (ECM) and the culture media formulation, patient-derived colon organoids are co-cultured successfully within a self-assembled vascular network, and it is found that the colon organoids grow significantly better in the platform under constant perfusion versus conventional static condition. Furthermore, a colon inflammation model with an innate immune function where circulating monocytes can be recruited from the vasculature, differentiate into macrophage, and infiltrate the colon organoids in response to tumor necrosis factor (TNF)- inflammatory cytokine stimulation is developed using the platform. With the ability to grow vascularized colon organoids under intravascular perfusion, the IFlowPlate platform could unlock new possibilities for screening potential therapeutic targets or modeling relevant diseases.
    Keywords:  colon; hydrogels; microfluidics; organ-on-a-chip; organoids; vasculature
    DOI:  https://doi.org/10.1002/adma.202002974
  3. Toxicology. 2020 Sep 24. pii: S0300-483X(20)30240-7. [Epub ahead of print] 152601
      Angiogenesis is a complex process that is required for development and tissue regeneration and it may be affected by many pathological conditions. Chemicals and drugs can impact formation and maintenance of the vascular networks; these effects may be both desirable (e.g., anti-cancer drugs) or unwanted (e.g., side effects of drugs). A number of in vivo and in vitro models exist for studies of angiogenesis and endothelial cell function, including organ-on-a-chip microphysiological systems. An arrayed organ-on-a-chip platform on a 96-well plate footprint that incorporates perfused microvessels, with and without tumors, was recently developed and it was shown that survival of the surrounding tissue was dependent on delivery of nutrients through the vessels. Here we describe a technology transfer of this complex microphysiological model between laboratories and demonstrate that reproducibility and robustness of these tissue chip-enabled experiments depend primarily on the source of the endothelial cells. The model was highly reproducible between laboratories and was used to demonstrate the advantages of the perfusable vascular networks for drug safety evaluation. As a proof-of-concept, we tested Fluorouracil (1-1,000 μM), Vincristine (1-1,000 nM), and Sorafenib (0.1-100 μM), in the perfusable and non-perfusable micro-organs, and in a colon cancer-containing micro-tumor model. Tissue chip experiments were compared to the traditional monolayer cultures of endothelial or tumor cells. These studies showed that human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs. The data from the 3D models confirmed advantages of the physiological environment as compared to 2D cell cultures. We demonstrated how these models can be translated into practice by verifying that the endothelial cell source and passage are critical elements for establishing a perfusable model.
    Keywords:  Endothelial cell; drug safety evaluation; microphysiological system; tissue chip
    DOI:  https://doi.org/10.1016/j.tox.2020.152601