bims-mifefi Biomed News
on Mitochondria and female physiology
Issue of 2024–03–03
eleven papers selected by
Kayla Vandiver, East Carolina University



  1. J Physiol. 2024 Mar 01.
      Skeletal muscle cellular development requires the integrated assembly of mitochondria and other organelles adjacent to the sarcomere in support of muscle contractile performance. However, it remains unclear how interactions among organelles and with the sarcomere relates to the development of muscle cell function. Here, we combine 3D volume electron microscopy, proteomic analyses, and live cell functional imaging to investigate the postnatal reorganization of mitochondria-organelle interactions in skeletal muscle. We show that while mitochondrial networks are disorganized and loosely associated with the contractile apparatus at birth, contact sites among mitochondria, lipid droplets and the sarcoplasmic reticulum are highly abundant in neonatal muscles. The maturation process is characterized by a transition to highly organized mitochondrial networks wrapped tightly around the muscle sarcomere but also to less frequent interactions with both lipid droplets and the sarcoplasmic reticulum. Concomitantly, expression of proteins involved in mitochondria-organelle membrane contact sites decreases during postnatal development in tandem with a decrease in abundance of proteins associated with sarcomere assembly despite an overall increase in contractile protein abundance. Functionally, parallel measures of mitochondrial membrane potential, NADH redox status, and NADH flux within intact cells revealed that mitochondria in adult skeletal muscle fibres maintain a more activated electron transport chain compared with neonatal muscle mitochondria. These data demonstrate a developmental redesign reflecting a shift from muscle cell assembly and frequent inter-organelle communication toward a muscle fibre with mitochondrial structure, interactions, composition and function specialized to support contractile function. KEY POINTS: Mitochondrial network organization is remodelled during skeletal muscle postnatal development. The mitochondrial outer membrane is in frequent contact with other organelles at birth and transitions to more close associations with the contractile apparatus in mature muscles. Mitochondrial energy metabolism becomes more activated during postnatal development. Understanding the developmental redesign process within skeletal muscle cells may help pinpoint specific areas of deficit in muscles with developmental disorders.
    Keywords:  3D mitochondrial structure; functional cellular imaging; organelle interactions; postnatal muscle development; volume electron microscopy
    DOI:  https://doi.org/10.1113/JP285014
  2. Obesity (Silver Spring). 2024 Feb 27.
       OBJECTIVE: The authors sought to understand sex differences in muscle metabolism in 73 older men and women.
    METHODS: Body composition, VO2 max, and insulin sensitivity (M) by 3-hour hyperinsulinemic-euglycemic clamp with vastus lateralis muscle biopsies were measured.
    RESULTS: Women had lower body weight, VO2 max, and fat-free mass than men. Men had lower M, lower change (insulin minus basal) in muscle glycogen synthase (GS) activity, and lower change in AKT protein expression than women. M was associated with the change (insulin-basal) in GS activity and the change in AKT protein expression. Sex differences (n = 60) were tested with 6-month weight loss or 3×/week aerobic exercise training. The postintervention minus preintervention change (insulin-basal) (∆∆) in GS activity (fractional, independent, total) was higher in men than women in the weight loss group and ∆∆ in GS fractional activity was higher in women than men in the aerobic exercise group. In all participants, ∆∆ in GS fractional and independent activities was related to ∆∆ in AKT expression and glycogen content.
    CONCLUSIONS: Sex differences in insulin sensitivity may be explained at the cellular muscle level, and to improve skeletal muscle insulin action in older adults, it may be necessary to recommend different behavioral strategies depending on the individual's sex.
    DOI:  https://doi.org/10.1002/oby.23987
  3. Acta Physiol (Oxf). 2024 Feb 25. e14117
       AIM: To investigate effects of hormone replacement therapy in postmenopausal women on factors associated with metabolic flexibility related to whole-body parameters including fat oxidation, resting energy expenditure, body composition and plasma concentrations of fatty acids, glucose, insulin, cortisol, and lipids, and for the mitochondrial level, including mitochondrial content, respiratory capacity, efficiency, and hydrogen peroxide emission.
    METHODS: 22 postmenopausal women were included. 11 were undergoing estradiol and progestin treatment (HT), and 11 were matched non-treated controls (CONT). Peak oxygen consumption, maximal fat oxidation, glycated hemoglobin, body composition, and resting energy expenditure were measured. Blood samples were collected at rest and during 45 min of ergometer exercise (65% VO2 peak). Muscle biopsies were obtained at rest and immediately post-exercise. Mitochondrial respiratory capacity, efficiency, and hydrogen peroxide emission in permeabilized fibers and isolated mitochondria were measured, and citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activity were assessed.
    RESULTS: HT showed higher absolute mitochondrial respiratory capacity and post-exercise hydrogen peroxide emission in permeabilized fibers and higher CS and HAD activities. All respiration normalized to CS activity showed no significant group differences in permeabilized fibers or isolated mitochondria. There were no differences in resting energy expenditure, maximal, and resting fat oxidation or plasma markers. HT had significantly lower visceral and total fat mass compared to CONT.
    CONCLUSION: Use of hormone therapy is associated with higher mitochondrial content and respiratory capacity and a lower visceral and total fat mass. Resting energy expenditure and fat oxidation did not differ between HT and CONT.
    Keywords:  hormone replacement therapy; metabolic flexibility; mitochondrial function
    DOI:  https://doi.org/10.1111/apha.14117
  4. Eur J Pediatr. 2024 Feb 28.
      Individuals born preterm present lower exercise capacity. Along with the cardiopulmonary responses and activity level, muscle strength is a key determinant of exercise capacity. This systematic review aimed to summarize the current knowledge on the impact of preterm birth on skeletal muscle mass and function across the lifespan. The databases PubMed, MEDLINE, EBM, Embase, CINAHL Plus, Global Index Medicus, and Google Scholar were searched using keywords and MeSH terms related to skeletal muscle, preterm birth, and low birth weight. Two independent reviewers undertook study selection, data extraction, and quality appraisal using Covidence review management. Data were pooled to estimate the prematurity effect on muscle mass and function using the R software. From 4378 studies retrieved, 132 were full-text reviewed and 25 met the inclusion/exclusion criteria. Five studies presented a low risk of bias, and 5 had a higher risk of bias due to a lack of adjustment for confounding factors and presenting incomplete outcomes. Meta-analyses of pooled data from homogenous studies indicated a significant reduction in muscle thickness and jump test (muscle power) in individuals born preterm versus full-term with standardized mean difference and confidence interval of - 0.58 (0.27, 0.89) and - 0.45 (0.21, 0.69), respectively.    Conclusion: Overall, this systematic review summarizing the existing literature on the impact of preterm birth on skeletal muscle indicates emerging evidence that individuals born preterm, display alteration in the development of their skeletal muscle mass and function. This work also highlights a clear knowledge gap in understanding the effect of preterm birth on skeletal muscle development. What is Known: • Preterm birth, which occurs at a critical time of skeletal muscle development and maturation, impairs the development of different organs and tissues leading to a higher risk of comorbidities such as cardiovascular diseases. • Preterm birth is associated with reduced exercise capacity. What is New: • Individuals born preterm display alterations in muscle mass and function compared to individuals born at term from infancy to adulthood. • There is a need to develop preventive or curative interventions to improve skeletal muscle health in preterm-born individuals.
    Keywords:  Exercise capacity; Muscle function; Muscle mass; Preterm birth; Skeletal muscle
    DOI:  https://doi.org/10.1007/s00431-023-05410-5
  5. Chin Med Sci J. 2024 Feb 29.
      Objective To investigate the protective effect of dihydromyricetin (DHM) against exercise-induced muscle damage (EIMD) in mice and its potential mechanism. Methods Adult male C57BL/6J mice were randomly divided into control (CG), exercise (EG), and DHM (100 mg/kg weight ·d) + exercise (DHM) groups. The intervention lasted for four weeks, during which the animals in the EG and DHM groups were subjected to exercise training for 1 h per day. The day after the training, a 90-min treadmill exercise (slope: 0 and speed: 18 m/min) was conducted in both EG and DHM groups. Samples were harvested from the three groups 24 h after the exercise, followed by the measurement of serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, total superoxide dismutase (T-SOD) activity, malondialdehyde content, and skeletal muscle mitochondrial enzyme complex I and II activities. Finally, histological changes in the skeletal muscle were observed, and the protein expressions of mitochondrial function-related pathways were detected by Western blotting. Results Skeletal muscle morphological changes and mitochondrial damage were alleviated in the DHM group compared to those in the EG. The activities of EIMD markers CK and LDH and the level of lipid peroxidation were notably repressed and the serum T-SOD activity in was enhanced after DHM intervention. Western blotting demonstrated that the expressions of sirtuin type 3 (SIRT3), estrogen-related receptor alpha, and peroxisome proliferator-activated receptor-gamma coactivator-1 alpha in the skeletal muscle of mice were raised after the DHM intervention.Conclusion DHM can relieve EIMD in mice, possibly by promoting the recovery of the mitochondrial structure and function in the skeletal muscle of mice after high-intensity exercise via the activation of the SIRT3 signaling pathway.
    Keywords:  dihydromyricetin; exercise-induced muscle damage; mitochondrial function
    DOI:  https://doi.org/10.24920/004272
  6. J Obstet Gynaecol Res. 2024 Feb 28.
       AIM: Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by menstrual irregularities, androgen excess, and polycystic ovarian morphology, but its pathogenesis remains largely unknown. This review focuses on how androgen excess influences the molecular basis of energy metabolism, mitochondrial function, and mitophagy in granulosa cells and oocytes, summarizes our current understanding of the pathogenesis of PCOS, and discuss perspectives on future research directions.
    METHODS: A search of PubMed and Google Scholar databases were used to identify relevant studies for this narrative literature review.
    RESULTS: Female offspring born of pregnant animals exposed to androgens recapitulates the PCOS phenotype. Abnormal mitochondrial morphology, altered expression of genes related to glycolysis, mitochondrial biogenesis, fission/fusion dynamics, and mitophagy have been identified in PCOS patients and androgenic animal models. Androgen excess causes uncoupling of the electron transport chain and depletion of the cellular adenosine 5'-triphosphate pool, indicating further impairment of mitochondrial function. A shift toward mitochondrial fission restores mitochondrial quality control mechanisms. However, prolonged mitochondrial fission disrupts autophagy/mitophagy induction due to loss of compensatory reserve for mitochondrial biogenesis. Disruption of compensatory mechanisms that mediate the quality control switch from mitophagy to apoptosis may cause a disease phenotype. Furthermore, genetic predisposition, altered expression of genes related to glycolysis and oxidative phosphorylation, or a combination of these factors may also contribute to the development of PCOS.
    CONCLUSION: In conclusion, fetuses exposed to a hyperandrogenemic intrauterine environment may cause the PCOS phenotype possibly through disruption of the compensatory regulation of the mitophagy-apoptosis axis.
    Keywords:  androgen; anti-Müllerian hormone; compensatory mechanism; mitochondrial function; mitophagy; polycystic ovarian syndrome
    DOI:  https://doi.org/10.1111/jog.15916
  7. Eur J Pharmacol. 2024 Feb 26. pii: S0014-2999(24)00142-0. [Epub ahead of print] 176454
      Estrogen hormone replacement therapy (EHRT), improving women's life quality at menopause, reduces anxiety and depression symptoms associated with ovarian hormonal decline. However, its potential adverse effects, like thromboembolism and cancer risk, limit its use. Prolame is a synthetic 17β-amino estrogen with antithrombotic actions that exerts anxiolytic- and antidepressant-like effects on young adult ovariectomized female rats. It is unknown if prolame's effects may be observed in age and endocrine conditions emulating menopause. This study aimed to identify the antidepressant- and anxiolytic-like effects of prolame and E2 (used as a reference estrogen treatment) in middle-aged female rats coursing with irregular cycles, in two different conditions: ovariectomized or gonadally intact. Results were compared with those from young adult ovariectomized rats. Prolame (60 or 120 μg/kg), 17β-estradiol (E2, 40 or 80 μg/kg), or vehicle were chronically administered, and their effects were evaluated in the elevated plus-maze, defensive burying behavior test, open field test, and forced swimming test. Uterotrophic actions were estimated by uterine weight related to body weight. Prolame and E2 produced robust anxiolytic- and antidepressant-like effects in young adult ovariectomized rats, but these effects were absent in gonadally intact middle-aged rats. Interestingly, only prolame induced anxiolytic- and antidepressant-like effects in middle-aged ovariectomized rats. Uterotrophic effects of prolame were weaker than E2 effects, notably in middle-aged females. Altogether, present data support the notion that prolame has the potential to be considered an EHRT with relevant psychoactive actions and with apparently lower adverse-side effects, especially in middle-aged populations.
    Keywords:  Aminoestrogens; Anxiety; Depression; Estrogen replacement therapy; Uterotrophic effects
    DOI:  https://doi.org/10.1016/j.ejphar.2024.176454
  8. Mol Biol Rep. 2024 Feb 24. 51(1): 359
      The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase crucial for cellular differentiation, proliferation, and autophagy. It shows a complex role in the endometrium, influencing both normal and pathogenic conditions. mTOR promotes the growth and maturation of endometrial cells, enhancing endometrial receptivity and decidualization. However, it also contributes to the development of endometriosis (EMs) and endometrial cancer (EC), thus emerging as a therapeutic target for these conditions. In this review, we summarize recent research progress on the mTOR signalling pathway in the endometrium. This provides insights into female endometrial structure and function and guides the prevention and treatment of related diseases.
    Keywords:  Decidualization; Endometrial cancer; Endometrial receptivity; Endometriosis; Endometrium; mTOR
    DOI:  https://doi.org/10.1007/s11033-023-08937-w
  9. Eur J Med Chem. 2024 Feb 17. pii: S0223-5234(24)00135-1. [Epub ahead of print]268 116255
      Breast cancer (BC) still poses a threat worldwide which demands continuous efforts to present safer and efficacious treatment options via targeted therapy. Beside kinases' aberrations as Aurora B kinase which controls cell division, BC adopts distinct metabolic profiles to meet its high energy demands. Accordingly, targeting both aurora B kinase and/or metabolic vulnerability presents a promising approach to tackle BC. Based on a previously reported indolinone-based Aurora B kinase inhibitor (III), and guided by structural modification and SAR investigation, we initially synthesized 11 sulfonamide-indolinone hybrids (5a-k), which showed differential antiproliferative activities against the NCI-60 cell line panel with BC cells displaying preferential sensitivity. Nonetheless, modest activity against Aurora B kinase (18-49% inhibition) was noted at 100 nM. Screening of a representative derivative (5d) against 17 kinases, which are overexpressed in BC, failed to show significant activity at 1 μM concentration, suggesting that kinase inhibitory activity only played a partial role in targeting BC. Bioinformatic analyses of genome-wide transcriptomics (RNA-sequencing), metabolomics, and CRISPR loss-of-function screens datasets suggested that indolinone-completely responsive BC cell lines (MCF7, MDA-MB-468, and T-47D) were more dependent on mitochondrial oxidative phosphorylation (OXPHOS) compared to partially responsive BC cell lines (MDA-MB-231, BT-549, and HS 578 T). An optimized derivative, TC11, obtained by molecular hybridization of 5d with sunitinib polar tail, manifested superior antiproliferative activity and was used for further investigations. Indeed, TC11 significantly reduced/impaired the mitochondrial respiration, as well as mitochondria-dependent ROS production of MCF7 cells. Furthermore, TC11 induced G0/G1 cell cycle arrest and apoptosis of MCF7 BC cells. Notably, anticancer doses of TC11 did not elicit cytotoxic effects on normal cardiomyoblasts and hepatocytes. Altogether, these findings emphasize the therapeutic potential of targeting the metabolic vulnerability of OXPHOS-dependent BC cells using TC11 and its related sulfonamide-indolinone hybrids. Further investigation is warranted to identify their precise/exact molecular target.
    Keywords:  Aurora B; Bioinformatics; Breast cancer; Indolinone hybrids; Mitochondrial OXPHOS; NCI-60 cell lines
    DOI:  https://doi.org/10.1016/j.ejmech.2024.116255
  10. bioRxiv. 2024 Feb 14. pii: 2024.02.14.580329. [Epub ahead of print]
      Progesterone production by the corpus luteum is fundamental for establishing and maintaining pregnancy. The pituitary gonadotropin luteinizing hormone (LH) is recognized as the primary stimulus for luteal formation and progesterone synthesis, regardless of species. Previous studies demonstrated an elevation in abundance of genes related to glucose and lipid metabolism during the follicular to luteal transition. However, the metabolic phenotype of these highly steroidogenic cells has not been studied. Herein, we determined acute metabolic changes induced by LH in primary luteal cells and defined pathways required for progesterone synthesis. Untargeted metabolomics analysis revealed that LH induces rapid changes in vital metabolic pathways, including glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway, de novo lipogenesis, and hydrolysis of phospholipids. LH stimulated glucose uptake, enhanced glycolysis, and flux of [U- 13 C 6 ]-labeled glucose-derived carbons into metabolic branches associated with adenosine 5'-triphosphate (ATP) and NADH/NADPH production, synthesis of nucleotides, proteins, and lipids, glycosylation of proteins or lipids, and redox homeostasis. Selective use of small molecule inhibitors targeting the most significantly changed pathways, such as glycolysis, TCA cycle, and lipogenesis, uncovered cellular metabolic routes required for LH-stimulated steroidogenesis. Furthermore, LH via the protein kinase A (PKA) pathway triggered post- translational modification of acetyl-CoA carboxylase alpha (ACACA) and ATP citrate lyase (ACLY), enzymes involved in de novo synthesis of fatty acids. Inhibition of ACLY and fatty acid transport into mitochondria reduced LH-stimulated ATP, cAMP production, PKA activation, and progesterone synthesis. Taken together, these findings reveal novel hormone-sensitive metabolic pathways essential for maintaining LHCGR/PKA signaling and steroidogenesis in ovarian luteal cells.
    Significance: The establishment and maintenance of pregnancy require a well-developed corpus luteum, an endocrine gland within the ovary that produces progesterone. Although there is increased awareness of intracellular signaling events initiating the massive production of progesterone during the reproductive cycle and pregnancy, there are critical gaps in our knowledge of the metabolic and lipidomic pathways required for initiating and maintaining luteal progesterone synthesis. Here, we describe rapid, hormonally triggered metabolic pathways, and define metabolic targets crucial for progesterone synthesis by ovarian steroidogenic cells. Understanding hormonal control of metabolic pathways may help elucidate approaches for improving ovarian function and successful reproduction or identifying metabolic targets for developing nonhormonal contraceptives.
    DOI:  https://doi.org/10.1101/2024.02.14.580329
  11. Womens Health (Lond). 2024 Jan-Dec;20:20 17455057241227362
      Across the globe, metabolic syndrome, hyperuric acid, and their related diseases, such as cardiovascular disease, diabetes, and insulin resistance, are increasing in incidence due to metabolic imbalances. Due to the pathogenesis, women are more prone to these diseases than men. As estrogen levels decrease after menopause, obesity and metabolic disorders are more likely to occur. Men are also affected by hyperuric acid. To provide ideas for the prevention and treatment of metabolic syndrome and hyperuricemia, this article reviews and analyzes the relationship between estrogen receptors, metabolic syndrome, and hyperuricemia.
    Keywords:  estrogen; estrogen receptors; hypertension; hyperuricemia; metabolic syndrome
    DOI:  https://doi.org/10.1177/17455057241227362