Mol Ther. 2025 Apr 03. pii: S1525-0016(25)00260-6. [Epub ahead of print]
Jie Liu,
Jun Chen,
Shisheng Huang,
Junfan Guo,
Xiangyang Li,
Ying Yan,
Ruijing Chen,
Guanglei Li,
Ming Liu,
Jiao Wei,
Xingxu Huang,
Yunbo Qiao.
Double-stranded DNA (dsDNA) cytosine deaminase DddA orthologs from multiple types of bacteria have been fused with TALE system for mitochondrial DNA (mtDNA) base editing, while the efficiencies remain limited and its nuclear off-targeting activity cannot be ignored yet. Here we identified a DddA ortholog from Burkholderia gladioli (BgDddA) and generated nuclear or mitochondrial DNA cytosine base editors (mitoCBEs), exhibiting higher C•G-to-T•A editing frequencies compared to canonical DdCBE, and fusion with transactivator Rta remarkably improved editing efficiencies by up to 6.4-fold at non-TC targets. Referring to DddA11, we further introduced six substitutions into BgDddA and generated mitoCBE3.2, which efficiently induced disease-associated mtDNA mutations in mouse and human cell lines at both TC and non-TC targets with efficiency reaching up to 99.2%. Using mitoCBE3.2, single clones containing homoplasmic mtDNA mutations or premature stop codons associated with human diseases were generated, and the functions of these mutations have been evaluated upon the treatment of ROS inducers. Importantly, mitochondria harboring these homoplasmic mutations were transplanted into wildtype cells, enabling precise base conversions, without risk of nuclear gene off-targets. Thus, we have engineered an efficient mitoCBE using BgDddA, facilitating mitochondrial disease modeling and potential mutation correction with the aid of mitochondrial transplantation.