bims-midhyp Biomed News
on Mitochondrial dysfunction and hypoxia
Issue of 2023‒09‒24
sixteen papers selected by
Alia Abukiwan, University of Heidelberg



  1. Exp Cell Res. 2023 Sep 17. pii: S0014-4827(23)00311-7. [Epub ahead of print] 113763
      Aerobic cellular respiration requires oxygen, which is an essential part of cardiomyocyte metabolism. Thus, oxygen is required for the physiologic metabolic activities and development of adult hearts. However, the activities of metabolic pathways associated with hypoxia in cardiomyocytes (CMs) have not been conclusively described. In this review, we discuss the role of hypoxia in the development of the hearts metabolic system, and the metabolic remodeling associated with the hypoxic adult heart. Hypoxia-inducible factors (HIFs), the signature transcription factors in hypoxic environments, is also investigated for their potential to modulate hypoxia-induced metabolic changes. Metabolic remodeling existing in hypoxic hearts have also been shown to occur in chronic failing hearts, implying that novel therapeutic options for heart failure (HF) may exist from the hypoxic perspective. The pressure overload-induced HF and diabetes-induced HF are also discussed to demonstrate the effects of HIF factor-related pathways to control the metabolic remodeling of failing hearts.
    Keywords:  Heart failure; Hypoxia; Hypoxia-inducible factor; Metabolism; Substrate utilization
    DOI:  https://doi.org/10.1016/j.yexcr.2023.113763
  2. J Transl Med. 2023 Sep 19. 21(1): 635
      A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.
    Keywords:  Anticancer therapy; Cancer; Cardiotoxicity; Cardiovascular diseases; Mitochondrial dynamics; Mitochondrial dysfunction
    DOI:  https://doi.org/10.1186/s12967-023-04498-5
  3. Front Cell Dev Biol. 2023 ;11 1257651
      The mitochondrion is a major hub of cellular metabolism and involved directly or indirectly in almost all biological processes of the cell. In mitochondrial diseases, compromised respiratory electron transfer and oxidative phosphorylation (OXPHOS) lead to compensatory rewiring of metabolism with resemblance to the Warburg-like metabolic state of cancer cells. The transcription factor MYC (or c-MYC) is a major regulator of metabolic rewiring in cancer, stimulating glycolysis, nucleotide biosynthesis, and glutamine utilization, which are known or predicted to be affected also in mitochondrial diseases. Albeit not widely acknowledged thus far, several cell and mouse models of mitochondrial disease show upregulation of MYC and/or its typical transcriptional signatures. Moreover, gene expression and metabolite-level changes associated with mitochondrial integrated stress response (mt-ISR) show remarkable overlap with those of MYC overexpression. In addition to being a metabolic regulator, MYC promotes cellular proliferation and modifies the cell cycle kinetics and, especially at high expression levels, promotes replication stress and genomic instability, and sensitizes cells to apoptosis. Because cell proliferation requires energy and doubling of the cellular biomass, replicating cells should be particularly sensitive to defective OXPHOS. On the other hand, OXPHOS-defective replicating cells are predicted to be especially vulnerable to high levels of MYC as it facilitates evasion of metabolic checkpoints and accelerates cell cycle progression. Indeed, a few recent studies demonstrate cell cycle defects and nuclear DNA damage in OXPHOS deficiency. Here, we give an overview of key mitochondria-dependent metabolic pathways known to be regulated by MYC, review the current literature on MYC expression in mitochondrial diseases, and speculate how its upregulation may be triggered by OXPHOS deficiency and what implications this has for the pathogenesis of these diseases.
    Keywords:  Warburg effect; cellular senescence; electron transport chain; mitochondrial integrated stress response; oxidative phosphorylation; respiratory complex III
    DOI:  https://doi.org/10.3389/fcell.2023.1257651
  4. JCI Insight. 2023 Sep 22. pii: e166860. [Epub ahead of print]8(18):
      Lung contusion and gastric aspiration (LC and GA) are major risk factors for developing acute respiratory distress following trauma. Hypoxia from lung injury is mainly regulated by hypoxia-inducible factor 1α (HIF-1α). Published data from our group indicate that HIF-1α regulation in airway epithelial cells (AEC) drives the acute inflammatory response following LC and GA. Metabolomic profiling and metabolic flux of Type II AEC following LC revealed marked increases in glycolytic and TCA intermediates in vivo and in vitro that were HIF-1α dependent. GLUT-1/4 expression was also increased in HIF-1α+/+ mice, suggesting that increased glucose entry may contribute to increased intermediates. Importantly, lactate incubation in vitro on Type II cells did not significantly increase the inflammatory byproduct IL-1β. Contrastingly, succinate had a direct proinflammatory effect on human small AEC by IL-1β generation in vitro. This effect was reversed by dimethylmalonate, suggesting an important role for succinate dehydrogenase in mediating HIF-1α effects. We confirmed the presence of the only known receptor for succinate binding, SUCNR1, on Type II AEC. These results support the hypothesis that succinate drives HIF-1α-mediated airway inflammation following LC. This is the first report to our knowledge of direct proinflammatory activation of succinate in nonimmune cells such as Type II AEC in direct lung injury models.
    Keywords:  Hypoxia; Inflammation; Macrophages; Pulmonology
    DOI:  https://doi.org/10.1172/jci.insight.166860
  5. J Trace Elem Med Biol. 2023 Sep 18. pii: S0946-672X(23)00183-9. [Epub ahead of print]80 127307
      BACKGROUND: Copper (Cu), by inhibiting the factor inhibiting HIF-1 (FIH-1), promotes the transcriptional activity of hypoxia-inducible factor-1 (HIF-1).OBJECTIVE: The present study was undertaken to understand the molecular mechanism by which Cu inhibits FIH-1.
    METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with dimethyloxalylglycine (DMOG) resulting in HIF-1α accumulation and the FIH-1 protein complexes were pulled down for candidate protein analysis. The metal binding sites were predicted by both MetalDetector V2.0 and Metal Ion-Binding Site Prediction Server, and then the actual ability to bind to Cu in vitro was tested by both Copper-Immobilized metal affinity chromatography (Cu-IMAC) and Isothermal Titration Calorimetry (ITC). Subsequently, subcellular localization was monitored by immunocytochemistry, GFP-fusion protein expression plasmid and Western blotting in the nuclear extract. The interaction of candidate protein with HIF-1α and FIH-1 was validated by Co-Immunoprecipitation (Co-IP). Finally, the effect of candidate protein on the FIH-1 structure and HIF-1α transcriptional activity was analyzed by the InterEvDock3 web server and real-time quantitative RT-PCR.
    RESULTS: ATP-binding cassette E1 (ABCE1) was present in the FIH-1 complexes and identified as a leading Cu-binding protein as indicated by a number of possible Cu binding sites. The ability of ABCE1 to bind Cu was demonstrated in vitro. ABCE1 entered the nucleus along with FIH-1 under hypoxic conditions. Protein interaction analysis revealed that ABCE1 prevented FIH-1 to bind iron ions, inhibiting FIH-1 enzymatic activity. ABCE1 silencing suppressed the expression of Cu-dependent HIF-1 target gene BNIP3, not that of Cu-independent IGF-2.
    CONCLUSION: The results demonstrate that ABCE1, as a Cu-binding protein, enters the nucleus under hypoxic conditions and inhibits FIH-1degradation of HIF-1α, thus promoting HIF-1 transactivation of angiogenic gene expression.
    Keywords:  ABCE1; Copper-binding protein; FIH-1; HIF-1α transcriptional activity
    DOI:  https://doi.org/10.1016/j.jtemb.2023.127307
  6. Biosystems. 2023 Sep 20. pii: S0303-2647(23)00207-1. [Epub ahead of print] 105032
      Knowing how the oxidative phosphorylation (OXPHOS) system in cancer cells operates differently from that of normal cells would help find compounds that specifically paralyze the energy metabolism of cancer cells. The first experiments in the study of mitochondrial respiration using the metabolic control analysis (MCA) method were done with isolated liver mitochondria in the early 80s of the last century. Subsequent studies have shown that the regulation of mitochondrial respiration by ADP in isolated mitochondria differs significantly from a model of mitochondria in situ, where the contacts with components in the cytoplasm are largely preserved. The method of selective permeabilization of the outer membrane of the cells allows the application of MCA to evaluate the contribution of different components of the OXPHOS system to its functioning while mitochondria are in a natural state. In this review, we summarize the use of MCA to study OXPHOS in cancer using permeabilized cells and tissues. In addition, we give examples of how this data fits into cancer research with a completely different approach and methodology.
    Keywords:  Cancer; Metabolic control analysis; Mitochondria; Oxidative phosphorylation
    DOI:  https://doi.org/10.1016/j.biosystems.2023.105032
  7. Med Rev (Berl). 2021 Dec;1(2): 199-221
      How cells sense and respond to environmental changes is still a key question. It has been identified that cellular metabolism is an important modifier of various epigenetic modifications, such as DNA methylation, histone methylation and acetylation and RNA N6-methyladenosine (m6A) methylation. This closely links the environmental nutrient availability to the maintenance of chromatin structure and gene expression, and is crucial to regulate cellular homeostasis, cell growth and differentiation. Cancer metabolic reprogramming and epigenetic alterations are widely observed, and facilitate cancer development and progression. In cancer cells, oncogenic signaling-driven metabolic reprogramming modifies the epigenetic landscape via changes in the key metabolite levels. In this review, we briefly summarized the current evidence that the abundance of key metabolites, such as S-adenosyl methionine (SAM), acetyl-CoA, α-ketoglutarate (α-KG), 2-hydroxyglutarate (2-HG), uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) and lactate, affected by metabolic reprogramming plays an important role in dynamically regulating epigenetic modifications in cancer. An improved understanding of the roles of metabolic reprogramming in epigenetic regulation can contribute to uncover the underlying mechanisms of metabolic reprogramming in cancer development and identify the potential targets for cancer therapies.
    Keywords:  DNA methylation; RNA m6A; cancer metabolic reprogramming; epigenetic modifications; histone acetylation; histone methylation
    DOI:  https://doi.org/10.1515/mr-2021-0015
  8. FEBS Lett. 2023 Sep 16.
      The integrity of the nuclear envelope (NE) depends on the function of nuclear pore complexes (NPCs), transport channels that control macromolecular traffic between the nucleus and cytosol. The central importance of NPCs suggests the existence of quality control (QC) mechanisms that oversee their assembly and function. In this perspective, we emphasize the challenges associated with NPC assembly and the need for QC mechanisms that operate at various stages of an NPC's life. This includes cytosolic pre-assembly QC that helps enforce key nucleoporin-nucleoporin interactions and their ultimate stoichiometry in the NPC in addition to mechanisms that monitor aberrant fusion of the inner and outer nuclear membranes. Furthermore, we discuss if and how these QC mechanisms may operate to sense faulty mature NPCs to facilitate their repair or removal. The so far uncovered mechanisms for NPC QC provide fertile ground for future research that not only benefits a better understanding of the vital role that NPCs play in cellular physiology but also how loss of NPC function and/or these QC mechanisms might be an input to ageing and disease.
    Keywords:  ESCRT; Nuclear pore complex; ageing; autophagy; membrane fusion; nuclear envelope; nuclear pore complex assembly; nuclear transport; proteostasis; quality control
    DOI:  https://doi.org/10.1002/1873-3468.14739
  9. BMC Genomics. 2023 Sep 22. 24(1): 561
      The mitochondria are central in the cellular response to changing environmental conditions resulting from disease states, environmental exposures or normal physiological processes. Although the influences of environmental stressors upon the nuclear epigenome are well characterized, the existence and role of the mitochondrial epigenome remains contentious. Here, by quantifying the mitochondrial epigenomic response of pineal gland cells to circadian stress, we confirm the presence of extensive cytosine methylation within the mitochondrial genome. Furthermore, we identify distinct epigenetically plastic regions (mtDMRs) which vary in cytosinic methylation, primarily in a non CpG context, in response to stress and in a sex-specific manner. Motifs enriched in mtDMRs contain recognition sites for nuclear-derived DNA-binding factors (ATF4, HNF4A) important in the cellular metabolic stress response, which we found to be conserved across diverse vertebrate taxa. Together, these findings suggest a new layer of mito-nuclear interaction in which the nuclear metabolic stress response could alter mitochondrial transcriptional dynamics through the binding of nuclear-derived transcription factors in a methylation-dependent context.
    Keywords:  DNA-binding; Epigenome; Methylation; Mitochondrial genome; Pineal gland
    DOI:  https://doi.org/10.1186/s12864-023-09668-9
  10. BMC Cardiovasc Disord. 2023 09 20. 23(1): 470
      Myocardial infarction (MI) is a leading cause of mortality. To better understand its molecular and cellular mechanisms, we used bioinformatic tools and molecular experiments to explore the pathogenesis and prognostic markers. Differential gene expression analysis was conducted using GSE60993 and GSE66360 datasets. Hub genes were identified through pathway enrichment analysis and PPI network construction, and four hub genes (AQP9, MMP9, FPR1, and TREM1) were evaluated for their predictive performance using AUC and qRT-PCR. miR-206 was identified as a potential regulator of TREM1. Finally, miR-206 was found to induce EC senescence and ER stress through upregulating mitochondrial ROS levels via TREM1. These findings may contribute to understanding the pathogenesis of MI and identifying potential prognostic markers.
    Keywords:  Bioinformatics; Hub genes; MiRNA; Mitochondrial ROS; Myocardial infarction
    DOI:  https://doi.org/10.1186/s12872-023-03481-8
  11. Cell Chem Biol. 2023 Aug 31. pii: S2451-9456(23)00280-5. [Epub ahead of print]
      Mitochondrial biogenesis initiates within hours of T cell receptor (TCR) engagement and is critical for T cell activation, function, and survival; yet, how metabolic programs support mitochondrial biogenesis during TCR signaling is not fully understood. Here, we performed a multiplexed metabolic chemical screen in CD4+ T lymphocytes to identify modulators of metabolism that impact mitochondrial mass during early T cell activation. Treatment of T cells with pyrvinium pamoate early during their activation blocks an increase in mitochondrial mass and results in reduced proliferation, skewed CD4+ T cell differentiation, and reduced cytokine production. Furthermore, administration of pyrvinium pamoate at the time of induction of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis in mice, prevented the onset of clinical disease. Thus, modulation of mitochondrial biogenesis may provide a therapeutic strategy for modulating T cell immune responses.
    Keywords:  CD4(+) T cells; T cell differentiation; high-throughput metabolic screen; mitochondrial biogenesis; pyruvate oxidation; pyrvinium pamoate
    DOI:  https://doi.org/10.1016/j.chembiol.2023.08.008
  12. Oncol Rep. 2023 Nov;pii: 196. [Epub ahead of print]50(5):
      In the present study, it was aimed to investigate the effects and potential mechanisms of heat shock protein B7 (HSPB7) on lung adenocarcinoma (LUAD). Bioinformatic analysis was performed to explore the association between HSPB7 expression and patients with LUAD. MTT, colony formation, wound healing and Transwell assays were performed to examine the proliferative, migratory and invasive abilities of H1975 and A549 cells. Western blot analysis was conducted to determine the corresponding protein expression. Co‑Immunoprecipitation and Chromatin immunoprecipitation assays were carried out to reveal the interaction between HSPB7 and myelodysplastic syndrome 1 and ecotropic viral integration site 1 complex locus (MECOM). In addition, an animal model was conducted by the subcutaneous injection of A549 cells into BALB/c nude mice, and tumor weight and size were measured. HSPB7 was downregulated in LUAD tissues and cells, and its expression level correlated with patient prognosis. Cell functional data revealed that silencing of HSPB7 promoted lung cancer cell proliferation, migration, invasion and epithelial mesenchymal transition (EMT); whereas overexpression of HSPB7 led to the opposite results. Furthermore, bioinformatics analysis showed that HSPB7 inhibited glycolysis. HSPB7 decreased glucose consumption, lactic acid production, and lactate dehydrogenase A, hexokinase 2 and pyruvate kinase muscle isoform 2 protein levels. The results demonstrated that MECOM was a transcription factor of HSPB7. Collectively, these results suggested that HSPB7 is regulated by MECOM, and that HSPB7 attenuates LUAD cell proliferation, migration, invasion and EMT by inhibiting glycolysis.
    Keywords:  HSPB7; LUAD; MECOM; cell invasion; cell proliferation
    DOI:  https://doi.org/10.3892/or.2023.8633
  13. Aging Dis. 2023 Aug 24.
      Myocardial ischemia is the most common cardiovascular disease. Reperfusion, an important myocardial ischemia tool, causes unexpected and irreversible damage to cardiomyocytes, resulting in myocardial ischemia/reperfusion (MI/R) injury. Upon stress, especially oxidative stress induced by reactive oxygen species (ROS), autophagy, which degrades the intracellular energy storage to produce metabolites that are recycled into metabolic pathways to buffer metabolic stress, is initiated during myocardial ischemia and MI/R injury. Excellent cardioprotective effects of autophagy regulators against MI and MI/R have been reported. Reversing disordered cardiac metabolism induced by ROS also exhibits cardioprotective action in patients with myocardial ischemia. Herein, we review current knowledge on the crosstalk between ROS, cardiac autophagy, and metabolism in myocardial ischemia and MI/R. Finally, we discuss the possible regulators of autophagy and metabolism that can be exploited to harness the therapeutic potential of cardiac metabolism and autophagy in the diagnosis and treatment of myocardial ischemia and MI/R.
    DOI:  https://doi.org/10.14336/AD.2023.0823-4
  14. Sci Rep. 2023 Sep 19. 13(1): 15515
      Oxidative stress has been shown to induce cell death in a wide range of human diseases including cardiac ischemia/reperfusion injury, drug induced cardiotoxicity, and heart failure. However, the mechanism of cell death induced by oxidative stress remains incompletely understood. Here we provide new evidence that oxidative stress primarily induces ferroptosis, but not apoptosis, necroptosis, or mitochondria-mediated necrosis, in cardiomyocytes. Intriguingly, oxidative stress induced by organic oxidants such as tert-butyl hydroperoxide (tBHP) and cumene hydroperoxide (CHP), but not hydrogen peroxide (H2O2), promoted glutathione depletion and glutathione peroxidase 4 (GPX4) degradation in cardiomyocytes, leading to increased lipid peroxidation. Moreover, elevated oxidative stress is also linked to labile iron overload through downregulation of the transcription suppressor BTB and CNC homology 1 (Bach1), upregulation of heme oxygenase 1 (HO-1) expression, and enhanced iron release via heme degradation. Strikingly, oxidative stress also promoted HO-1 translocation to mitochondria, leading to mitochondrial iron overload and lipid reactive oxygen species (ROS) accumulation. Targeted inhibition of mitochondrial iron overload or ROS accumulation, by overexpressing mitochondrial ferritin (FTMT) or mitochondrial catalase (mCAT), respectively, markedly inhibited oxidative stress-induced ferroptosis. The levels of mitochondrial iron and lipid peroxides were also markedly increased in cardiomyocytes subjected to simulated ischemia and reperfusion (sI/R) or the chemotherapeutic agent doxorubicin (DOX). Overexpressing FTMT or mCAT effectively prevented cardiomyocyte death induced by sI/R or DOX. Taken together, oxidative stress induced by organic oxidants but not H2O2 primarily triggers ferroptotic cell death in cardiomyocyte through GPX4 and Bach1/HO-1 dependent mechanisms. Our results also reveal mitochondrial iron overload via HO-1 mitochondrial translocation as a key mechanism as well as a potential molecular target for oxidative stress-induced ferroptosis in cardiomyocytes.
    DOI:  https://doi.org/10.1038/s41598-023-42760-4
  15. Blood. 2023 Sep 22. pii: blood.2023020142. [Epub ahead of print]
      The use of Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib to block B cell receptor (BCR) signaling has achieved a remarkable clinical response in several B cell malignancies including mantle cell lymphoma (MCL) and diffuse large B cell lymphoma (DLBCL). Acquired drug resistance, however, is significant and impacts long-term survival of these patients. Here we demonstrate that the transcription factor EGR1 is involved in ibrutinib resistance. We found that EGR1 expression is elevated in ibrutinib-resistant activated B-cell-like subtype (ABC) DLBCL and MCL cells and can be further upregulated upon ibrutinib treatment. Genetic and pharmacological analyses revealed that overexpressed EGR1 mediates ibrutinib resistance. Mechanistically, TCF4 and EGR1 self-regulation induce EGR1 overexpression that mediates metabolic reprogramming to oxidative phosphorylation (OXPHOS) through transcriptional activation of PDP1, a phosphatase that dephosphorylates and activates the E1 component of the large pyruvate dehydrogenase complex. Therefore, EGR1-mediated PDP1 activation increases intracellular ATP production, leading to sufficient energy to enhance the proliferation and survival of ibrutinib-resistant lymphoma cells. Finally, we demonstrate that targeting OXPHOS with metformin or IM156, a newly developed OXPHOS inhibitor, inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting EGR1-mediated metabolic reprogramming to OXPHOS with metformin or IM156 provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory DLBCL or MCL.
    DOI:  https://doi.org/10.1182/blood.2023020142
  16. Biomed Pharmacother. 2023 Sep 19. pii: S0753-3322(23)01347-1. [Epub ahead of print]167 115549
      Lung transplantation is an evolutionary procedure from its experimental origin in the twentieth century and is now recognized as an established and routine life-saving intervention for a variety of end-stage pulmonary diseases refractory to medical management. Despite the success and continuous refinement in lung transplantation techniques, the widespread application of this important life-saving intervention is severely hampered by poor allograft quality offered from donors-after-brain-death. This has necessitated the use of lung allografts from donors-after-cardiac-death (DCD) as an additional source to expand the pool of donor lungs. Remarkably, the lung exhibits unique properties that may make it ideally suitable for DCD lung transplantation. However, primary graft dysfunction (PGD), allograft rejection and other post-transplant complications arising from unavoidable ischemia-reperfusion injury (IRI) of transplanted lungs, increase morbidity and mortality of lung transplant recipients annually. In the light of this, nitric oxide (NO), a selective pulmonary vasodilator, has been identified as a suitable agent that attenuates lung IRI and prevents PGD when administered directly to lung donors prior to donor lung procurement, or to recipients during and after transplantation, or administered indirectly by supplementing lung preservation solutions. This review presents a historical account of clinical lung transplantation and discusses the lung as an ideal organ for DCD. Next, the author highlights IRI and its clinical effects in lung transplantation. Finally, the author discusses preservation solutions suitable for lung transplantation, and the protective effects and mechanisms of NO in experimental and clinical lung transplantation.
    Keywords:  Donation-after-cardiac-death (DCD); Lung allograft rejection, nitric oxide (NO); Lung transplantation; NO donors; Primary graft dysfunction (PGD)
    DOI:  https://doi.org/10.1016/j.biopha.2023.115549