bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2025–04–06
two papers selected by
Rajalekshmy “Raji” Shyam, Indiana University Bloomington



  1. Free Radic Biol Med. 2025 Mar 28. pii: S0891-5849(25)00192-3. [Epub ahead of print]
      Diabetic retinopathy (DR) is the leading cause of blindness and is pathologically characterized by neuroinflammation and neovascularization. Retinal homeostasis is critically maintained by the retinal neurovascular unit (NVU), which can be disrupted by abnormal activation of microglia in DR. However, the underlying mechanism remains unclear. Here, we provide the first evidence of upregulated stimulator of interferon genes (STING) in microglia within fibrovascular membranes (FVMs) and retinas from oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced diabetic mice. Furthermore, we identified STING upregulation in BV2 cells stimulated with high glucose (HG) or hypoxia, accompanied by mitochondrial dysfunction and cytoplasmic leakage of damaged mitochondrial DNA (mtDNA). Pharmacologic or genetic inhibition of STING in microglia prevented their activation and polarization. Next, we demonstrated that STING-deficient BV2 cells reversed the proangiogenic behavior of endothelial cells and protected retinal ganglion cells (RGCs) from oxidative stress. Finally, intravitreal injection of AAV-STING alleviated retinal neurovascular pathologies in both OIR and STZ mice. This study demonstrated that the release of mtDNA mediates STING immune activation of microglia, which further exacerbates NVU damage in DR. In contrast, immunosuppressing STING in microglia could serve as a potential therapeutic strategy.
    Keywords:  Diabetic retinopathy; Neuroinflammation; Neurovascular unit; Oxidative stress; STING
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2025.03.042
  2. Front Pharmacol. 2025 ;16 1547492
       Purpose: This study aims to investigate the effects and mechanism of action of metformin on retinal neovascularization and fibrosis in a mouse model of neovascular age-related macular degeneration (nAMD).
    Methods: Very low-density lipoprotein receptor knockout (Vldlr -/-) mice, a mouse model of nAMD, were used in this study. Vldlr -/- mice were administered metformin on postnatal day (P) 20 for 20 days (early stage of pathological change) or at 5.5 months of age for 45 days (late stage of pathological change). Retinal leakage was examined by fundus fluorescein angiography (FFA). Retinal neovascularization was assessed by lectin staining. Retinal fibrosis was assessed by Western blotting, immunofluorescence staining, and Masson's trichrome staining.
    Results: Retinal vascular leakage and neovascularization were significantly reduced in Vldlr -/- mice treated with metformin compared to those treated with the vehicle at P40. The protein levels of inflammatory factors and phospho(p)-STAT3 were decreased, and P38 and ERK signaling were suppressed in the retinas of metformin-treated Vldlr -/- mice relative to those in the control group at P40. Fibrotic markers were upregulated in the retinas of Vldlr -/- mice treated with metformin compared to those treated with the vehicle at 7 months. Levels of the inflammatory factors and p-STAT3 were increased, and PI3K/AKT, P38, and ERK signaling were upregulated in the retinas of metformin-treated Vldlr -/- mice compared to those in the control group at 7 months.
    Conclusion: Metformin inhibits pathological retinal neovascularization but promotes fibrosis in experimental nAMD. These results provide evidence and highlight important considerations for the clinical use of metformin in different stages of nAMD.
    Keywords:  age-related macular degeneration; metformin; neovascular AMD; retinal fibrosis; retinal neovascularization; very low-density lipoprotein receptor
    DOI:  https://doi.org/10.3389/fphar.2025.1547492