bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2024–09–22
four papers selected by
Rajalekshmy “Raji” Shyam, Indiana University Bloomington



  1. Front Cell Neurosci. 2024 ;18 1442079
      Age-related macular degeneration (AMD) is a major cause of blindness that affects people over 60. While aging is the prominent factor in AMD, studies have reported a higher prevalence of AMD in women compared to age-matched men. Higher levels of the innate immune response's effector proteins complement factor B and factor I were also found in females compared to males in intermediate AMD. However, the mechanisms underlying these differences remain elusive. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and metabolic pathways. Previously, we showed that Pgc-1α repression and high-fat diet induce drastic AMD-like phenotypes in mice. Our recent data revealed that Pgc-1α repression alone can also induce retinal pigment epithelium (RPE) and retinal dysfunction in mice, and its inhibition in vitro results in lipid droplet accumulation in human RPE. Whether sex is a contributing factor in these phenotypes remains to be elucidated. Using electroretinography, we demonstrate that sex could influence RPE function during aging independent of Pgc-1α in wild-type (WT) mice. We further show that Pgc-1α repression exacerbates RPE and retinal dysfunction in females compared to aged-match male mice. Gene expression analyses revealed that Pgc-1α differentially regulates genes related to antioxidant enzymes and mitochondrial dynamics in males and females. RPE flat mounts immunolabeled with TOMM20 and DRP1 indicated a sex-dependent role for Pgc-1α in regulating mitochondrial fission. Analyses of mitochondrial network morphology suggested sex-dependent effects of Pgc-1α repression on mitochondrial dynamics. Together, our study demonstrates that inhibition of Pgc-1α induces a sex-dependent decline in RPE and retinal function in mice. These observations on the sex-dependent regulation of RPE and retinal function could offer novel insights into targeted therapeutic approaches for age-related RPE and retinal degeneration.
    Keywords:  AMD; PGC-1α; RPE; aging; mitochondria; retina; sex-difference
    DOI:  https://doi.org/10.3389/fncel.2024.1442079
  2. Mater Today Bio. 2024 Oct;28 101230
      Age-related macular degeneration (AMD) is the leading cause of blindness among elderly people worldwide. However, there are currently no effective treatments for AMD. Oxidative stress-induced retinal pigment epithelium (RPE) degeneration and the inflammatory response are the main causes of AMD. In this study, a polyethylene glycol (PEG)-coated rhodium nanozyme (PEG-RhZ) with excellent reactive oxygen species (ROS) and reactive nitrogen species (RNS) elimination capability was synthesized for the treatment of AMD. PEG-RhZs protected RPE cell viability and barrier function upon exposure to oxidative stress stimuli. Additionally, microglial migration and iNOS, IL-1β and TNF-α expression were inhibited by PEG-RhZs. In the acute phase of the AMD model, PEG-RhZs significantly alleviated RPE oxidative damage and inhibited microglial activation. In the late stage of the AMD model, PEG-RhZs reduced photoreceptor loss and improved vision impairment. Furthermore, PEG-RhZs showed good biocompatibility and stability both in vitro and in vivo. Collectively, our findings suggest the therapeutic potential of PEG-RhZs for AMD treatment. STATEMENT OF SIGNIFICANCE: AMD is a kind of retinal degenerative disease that poses heavy health burden globally. PEG-RhZs exhibiting robust ROS and RNS scavenging capabilities have shown promise in safeguarding retinal pigment epithelium (RPE) from oxidative stress, suppressing microglia activation and the secretion of pro-inflammatory molecules, mitigating loss of retinal photoreceptor cells, and ameliorating visual impairment. The commendable antioxidant properties, biological safety, and biostability of PEG-RhZs offer valuable insights for the clinical management of AMD.
    Keywords:  Inflammation; Microglia; Nanozyme; Oxidative stress; RPE
    DOI:  https://doi.org/10.1016/j.mtbio.2024.101230
  3. Invest Ophthalmol Vis Sci. 2024 Sep 03. 65(11): 22
       Purpose: Progressive choroid and retinal pigment epithelial (RPE) degeneration causing vision loss is a unique characteristic of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), a fatty acid oxidation disorder caused by a common c.1528G>C pathogenic variant in HADHA, the α subunit of the mitochondrial trifunctional protein (TFP). We established and characterized an induced pluripotent stem cell (iPSC)-derived RPE cell model from cultured skin fibroblasts of patients with LCHADD and tested whether addition of wildtype (WT) HAHDA could rescue the phenotypes identified in LCHADD-RPE.
    Methods: We constructed an rAAV expression vector containing 3' 3xFLAG-tagged human HADHA cDNA under the transcriptional control of the cytomegalovirus (CMV) enhancer-chicken beta actin (CAG) promoter (CAG-HADHA-3XFLAG). LCHADD-RPE were cultured, matured, and transduced with either AAV-GFP (control) or AAV-HADHA-3XFLAG.
    Results: LCHADD-RPE express TFP subunits and accumulate 3-hydroxy-acylcarnitines, cannot oxidize palmitate, and release fewer ketones than WT-RPE. When LCHADD-RPE are exposed to docosahexaenoic acid (DHA), they have increased oxidative stress, lipid peroxidation, decreased viability, and are rescued by antioxidant agents potentially explaining the pathologic mechanism of RPE loss in LCHADD. Transduced LCHADD-RPE expressing a WT copy of TFPα incorporated TFPα-FLAG into the TFP complex in the mitochondria and accumulated significantly less 3-hydroxy-acylcarnitines, released more ketones in response to palmitate, and were more resistant to oxidative stress following DHA exposure than control.
    Conclusions: iPSC-derived LCHADD-RPE are susceptible to lipid peroxidation mediated cell death and are rescued by exogenous HADHA delivered with rAAV. These results are promising for AAV-HADHA gene addition therapy as a possible treatment for chorioretinopathy in patients with LCHADD.
    DOI:  https://doi.org/10.1167/iovs.65.11.22
  4. J Transl Med. 2024 Sep 16. 22(1): 844
       BACKGROUND: Ocular toxicity is a severe adverse effect that limits the chronic clinical use of the antiarrhythmic drug amiodarone. Here, we aimed to evaluate the cytoprotective effect of artemisinin and explore the potential signalling pathways in human retinal pigment epithelial (RPE) cell cultures.
    METHODS: D407 cell cultures were exposed to amiodarone and the impact of artemisinin was evaluated. The key parameters included lactate dehydrogenase (LDH) release, intracellular reactive oxygen species (ROS) generation, and the mitochondrial membrane potential (MMP). We also assessed the protein levels of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), phosphorylated adenosine monophosphate-activated protein kinase (AMPK)ɑ (p-AMPK), calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), and nuclear factor erythroid 2-related factor 2 (Nrf2).
    RESULTS: Artemisinin reduced the cytotoxicity induced by amiodarone, as reflected by decreased LDH release, ROS generation, and MMP disruption. Additionally, artemisinin increased p-AMPK, CaMKK2, and Nrf2 protein levels. Inhibition of AMPK, CaMKK2, or Nrf2 abolished the cytoprotective effect of artemisinin. AMPK activation and Nrf2 knockdown further supported its protective role.
    CONCLUSIONS: Artemisinin protected RPE cells from amiodarone-induced damage via the CaMKK2/AMPK/Nrf2 pathway. The in vivo experiments in mice confirmed its efficacy in preventing retinal injury caused by amiodarone. These results suggest that an artemisinin-based eye formulation could be repurposed for treating amiodarone-induced ocular toxicity.
    Keywords:  AMPK; Amiodarone; Artemisinin; Human retinal pigment epithelial cells; Ocular toxicity; Oxidative damage
    DOI:  https://doi.org/10.1186/s12967-024-05593-x