bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2024‒01‒21
five papers selected by
Rajalekshmy “Raji” Shyam, Indiana University Bloomington



  1. Exp Eye Res. 2024 Jan 17. pii: S0014-4835(24)00010-1. [Epub ahead of print] 109789
      Age-related macular degeneration (AMD), a leading cause of vision loss, primarily arises from the degeneration of retinal pigment epithelium (RPE) and photoreceptors. Current therapeutic options for dry AMD are limited. Encouragingly, cultured RPE cells on parylene-based biomimetic Bruch's membrane demonstrate characteristics akin to the native RPE layer. In this study, we cultivated human embryonic stem cell-derived polarized RPE (hESC-PRPE) cells on parylene membranes at both small- and large-scale settings, collecting conditioned supernatant, denoted as PRPE-SF. We conducted a comprehensive analysis of the morphology of the cultured hESC-RPE cells and the secreted growth factors in PRPE-SF. To evaluate the in vivo efficacy of these products, the product was administered via intravitreal injections of PRPE-SF in immunodeficient Royal College of Surgeons (iRCS) rats, a model for retinal degeneration. Our study not only demonstrated the scalability of PRPE-SF production while maintaining RPE cell phenotype but also showed consistent protein concentrations between small- and large-scale batches. We consistently identified 10 key factors in PRPE-SF, including BMP-7, IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-6, MANF, PEDF, PDGF-AA, TGFβ1, and VEGF. Following intravitreal administration of PRPE-SF, we observed a significant increase in the thickness of the outer nuclear layer (ONL) and photoreceptor preservation in iRCS rats. Furthermore, correlation analysis revealed that IGFBP-3, IGFBP-4, MANF, PEDF, and TGFβ1 displayed positive associations with in vivo bioactivity, while GDF-15 exhibited a negative correlation. Overall, this study highlights the feasibility of scaling up PRPE-SF production on parylene membranes without compromising its essential constituents. The outcomes of PRPE-SF administration in an animal model of retinal degeneration present substantial potential for photoreceptor preservation. Moreover, the identification of candidate surrogate potency markers, showing strong positive associations with in vivo bioactivity, lays a solid foundation for the development of a promising therapeutic intervention for retinal degenerative diseases.
    DOI:  https://doi.org/10.1016/j.exer.2024.109789
  2. Chem Biol Drug Des. 2024 Jan;103(1): e14419
      Diabetic retinopathy (DR) is one of the most frequently occurring diabetic complications associated with inflammation and oxidative stress. Platycodin D (PLD) is a bio-active saponin that has been reported to exhibit anti-inflammation, anti-oxidative, and antidiabetic activities. Therefore, we speculated the protective effects of PLD on DR in the present study. Our results demonstrated that PLD attenuated high glucose (HG)-induced inflammation, as evidenced by decreased production of TNF-α, IL-1β, IL-6. The HG-induced oxidative stress was prevented by PLD with decreased ROS production and malondialdehyde (MDA) level, as well as increased activities of superoxide dismutase and glutathione (GSH). In addition, treatment of PLD significantly decreased the apoptotic rate in HG-induced ARPE-19 cells. The HG-caused increases in expression of bax and cleaved capsase-3, as well a decrease in bcl-2 expression were attenuated by PLD. Furthermore, PLD suppressed the activation of TLR4/MyD88/NF-κB and enhanced the activation of Nrf2/HO-1 pathway in HG-induced ARPE-19 cells. Additionally, overexpression of TLR4 attenuated the anti-inflammatory, while knockdown of Nrf2 reversed the anti-oxidative and anti-apoptotic activities of PLD in HG-stimulated ARPE-19 cells. Furthermore, PLD attenuates retinal damage in DR rats. Finally, we demonstrated that PLD weakened the TLR4/MyD88/NF-κB p65 pathway and promoted the Nrf2/HO-1 pathway in vivo. Taken together, these findings indicated that PLD exerted protective effects against DR, which were attributed to the regulation of TLR4/MyD88/NF-κB and Nrf2/HO-1 signaling pathways.
    Keywords:  Nrf2/HO-1; Platycodin D (PLD); TLR4/MyD88/NF-κB; diabetic retinopathy (DR); inflammation; oxidative stress
    DOI:  https://doi.org/10.1111/cbdd.14419
  3. Curr Top Microbiol Immunol. 2023 ;444 53-81
      Mitochondria are major cellular organelles that play an essential role in metabolism, stress response, immunity, and cell fate. Mitochondria are organized in a network with other cellular compartments, functioning as a signaling hub to maintain cells' health. Mitochondrial dysfunctions and genome alterations are associated with diseases including cancer. Mitochondria are a preferential target for pathogens, which have developed various mechanisms to hijack cellular functions for their benefit. Helicobacter pylori is recognized as the major risk factor for gastric cancer development. H. pylori induces oxidative stress and chronic gastric inflammation associated with mitochondrial dysfunction. Its pro-apoptotic cytotoxin VacA interacts with the mitochondrial inner membrane, leading to increased permeability and decreased ATP production. Furthermore, H. pylori induces mitochondrial DNA damage and mutation, concomitant with the development of gastric intraepithelial neoplasia as observed in infected mice. In this chapter, we present diverse aspects of the role of mitochondria as energy supplier and signaling hubs and their adaptation to stress conditions. The metabolic activity of mitochondria is directly linked to biosynthetic pathways. While H. pylori virulence factors and derived metabolites are essential for gastric colonization and niche adaptation, they may also impact mitochondrial function and metabolism, and may have consequences in gastric pathogenesis. Importantly, during its long way to reach the gastric epithelium, H. pylori faces various cellular types along the gastric mucosa. We discuss how the mitochondrial response of these different cells is affected by H. pylori and impacts the colonization and bacterium niche adaptation and point to areas that remain to be investigated.
    Keywords:  Gastric carcinogenesis; H. pylori; Metabolites; Mitochondria; VacA toxin
    DOI:  https://doi.org/10.1007/978-3-031-47331-9_3
  4. J Biol Eng. 2024 Jan 16. 18(1): 7
      BACKGROUND: Retinal pigment epithelium (RPE) cell therapy is a promising way to treat many retinal diseases. However, obtaining transplantable RPE cells is time-consuming and less effective. This study aimed to develop novel strategies for generating engineered RPE patches with physiological characteristics.RESULTS: Our findings revealed that RPE cells derived from human induced pluripotent stem cells (hiPSCs) successfully self-assembled into spheroids. The RPE spheroids treated with Y27632 and Repsox had increased expression of epithelial markers and RPE-specific genes, along with improved cell viability and barrier function. Transcriptome analysis indicated enhanced cell adhesion and extracellular matrix (ECM) organization in RPE spheroids. These RPE spheroids could be seeded and bioprinted on collagen vitrigel (CV) membranes to construct engineered RPE sheets. Circular RPE patches, obtained by trephining a specific section of the RPE sheet, exhibited abundant microvilli and pigment particles, as well as reduced proliferative capacity and enhanced maturation.
    CONCLUSIONS: Our study suggests that the supplementation of small molecules and 3D spheroid culture, as well as the bioprinting technique, can be effective methods to promote RPE cultivation and construct engineered RPE sheets, which may support future clinical RPE cell therapy and the development of RPE models for research applications.
    Keywords:  Collagen vitrigel scaffold; ROCK; Retinal pigment epithelium; Spheroid; TGF-β; Tissue engineering
    DOI:  https://doi.org/10.1186/s13036-024-00405-8
  5. Ann Clin Transl Neurol. 2024 Jan 16.
      Optic pathway gliomas (OPGs) arising in children with neurofibromatosis type 1 (NF1) can cause retinal ganglion cell (RGC) dysfunction and vision loss, which occurs more frequently in girls. While our previous studies demonstrated that estrogen was partly responsible for this sexually dimorphic visual impairment, herein we elucidate the underlying mechanism. In contrast to their male counterparts, female Nf1OPG mice have increased expression of glial interleukin-1β (IL-1β), which is neurotoxic to RGCs in vitro. Importantly, both IL-1β neutralization and leuprolide-mediated estrogen suppression decrease IL-1β expression and ameliorate RGC dysfunction, providing preclinical proof-of-concept evidence supporting novel neuroprotective strategies for NF1-OPG-induced vision loss.
    DOI:  https://doi.org/10.1002/acn3.51995