bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2022‒12‒25
six papers selected by
Raji Shyam
Indiana University Bloomington


  1. Antioxidants (Basel). 2022 Nov 28. pii: 2353. [Epub ahead of print]11(12):
      Phloroglucinol, a phenolic compound, is known to possess a potent antioxidant ability. However, its role in retinal cells susceptible to oxidative stress has not been well elucidated yet. Thus, the objective of this study was to evaluate whether phloroglucinol could protect against oxidative damage in cultured human retinal pigment epithelium ARPE-19 cells. For this purpose, ARPE-19 cells were stimula ted with hydrogen peroxide (H2O2) to mimic oxidative stress. Cell viability, cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial function, DNA damage, and autophagy were then assessed. Our results revealed that phloroglucinol ameliorated cell viability, cytotoxicity, and DNA damage in H2O2-exposued ARPE-19 cells and blocked production of ROS. Phloroglucinol also counteracted H2O2-induced apoptosis by reducing Bax/Bcl-2 ratio, blocking activation of caspase-3, and inhibiting degradation of poly (ADP-ribose) polymerase. H2O2 caused mitochondrial impairment and increased expression levels of mitophagy markers such as PINK1and PARKIN known to be associated with mitochondrial ROS (mtROS) generation and cytosolic release of cytochrome c. However, these changes were significantly attenuated by phloroglucinol. Mito-TEMPO, a selective mitochondrial antioxidant, further enhanced the protective effect of phloroglucinol against dysfunctional mitochondria. Furthermore, H2O2 induced autophagy, but not when ARPE-19 cells were pretreated with phloroglucinol, meaning that autophagy by H2O2 contributed to the pro-survival mechanism and that phloroglucinol protected ARPE-19 cells from apoptosis by blocking autophagy. Taken together, these results suggest that phloroglucinol can inhibit oxidative stress-induced ARPE-19 cell damage and dysfunction by protecting DNA damage, autophagy, and subsequent apoptosis through mitigation of mtROS generation. Thus, phloroglucinol might have therapeutic potential to prevent oxidative stress-mediated damage in RPE cells.
    Keywords:  DNA damage; apoptosis; autophagy; mitochondrial ROS; phloroglucinol
    DOI:  https://doi.org/10.3390/antiox11122353
  2. Expert Opin Ther Targets. 2022 Dec 18. 1-13
      INTRODUCTION: Age-related macular degeneration (AMD) is an eye disease leading to vision loss with poorly known pathogenesis and limited therapeutic options. Degradative autophagy (DA) is impaired in AMD, but emerging evidence points to secretary autophagy (SA) as a key element in AMD pathogenesis.AREAS COVERED: SA may cause the release of proteins and protein aggregates, lipofuscin, beta amyloid, faulty mitochondria, pro-inflammatory and pro-angiogenic factors from the retinal pigment epithelium (RPE) that may contribute to drusen formation and choroidal neovascularization. SA may replace DA, when formation of autolysosome is impaired, and then a harmful cargo, instead of being degraded, is extruded from the RPE contributing to drusen and/or angiogenic environment. Therefore, the interplay between DA and SA may be critical for drusen formation and choroidal neovascularization, so it can be a turn key to understand AMD pathogenesis.
    EXPERT OPINION: Although SA fulfills some beneficial functions, it is detrimental for the retina in many cases. Therefore, inhibiting SA may be a therapeutic strategy in AMD, but it is challenged by the development of selective SA inhibitors that would not affect DA. The TRIM16, SEC22B and RAB8A proteins, specific for secretory autophagosome, may be primary candidates as therapeutic targets, but their action is not limited to autophagy and therefore requires further studies.
    Keywords:  Age-related macular degeneration; amyloid beta; autophagy; drusen; lipofuscin; secretory autophagy
    DOI:  https://doi.org/10.1080/14728222.2022.2157260
  3. Molecules. 2022 Dec 16. pii: 8970. [Epub ahead of print]27(24):
      Esculetin is a coumarin-derived compound with antioxidant and anti-inflammatory properties. The current study aims to evaluate the therapeutic implications of esculetin on retinal dysfunction and uncover the underlying mechanisms. Tert-butyl hydroperoxide (t-BHP) at a concentration of 300 μM was used to induce oxidative stress in human retinal pigment epithelial cell line (ARPE-19) cells. Esculetin at concentrations below 250 μM did not cause cytotoxicity to ARPE-19 cells. Cell viability analysis confirmed that t-BHP induced oxidative injury of ARPE-19 cells. However, ARPE-19 cells were protected from t-BHP-induced oxidative injury by esculetin in a concentration-dependent manner. As a result of the TUNEL assay to confirm apoptosis, esculetin treatment reduced the number of TUNEL-positive cells. Esculetin down-regulated the expression levels of Bax, Caspase-3, and PARP and up-regulated the expression level of Bcl2. Collectively, this study demonstrates that esculetin exerts potent antioxidant properties in ARPE-19 cells, inhibiting t-BHP-induced apoptosis under the regulation of apoptotic factors.
    Keywords:  age-related macular degeneration; apoptosis; esculetin; oxidative stress; retinal pigment epithelial cell
    DOI:  https://doi.org/10.3390/molecules27248970
  4. Brain Sci. 2022 Nov 25. pii: 1620. [Epub ahead of print]12(12):
      PURPOSE: Retinal pigment epithelial (RPE) cells are highly specialized neural cells with several functions essential for vision. Progressive deterioration of RPE cells in elderly individuals can result in visual impairment and, ultimately, blinding disease. While human embryonic stem cell-derived RPE cell (hESC-RPE) growth conditions are generally harsher than those of cell lines, the subretinal transplantation of hESC-RPE is being clinically explored as a strategy to recover the damaged retina and improve vision. The cell-adhesion ability of the support is required for RPE transplantation, where pre-polarized cells can maintain specific functions on the scaffold. This work examined four typical biodegradable hydrogels as supports for hESC-RPE growth.METHODS: Four biodegradable hydrogels were examined: gelatin methacryloyl (GelMA), hyaluronic acid methacryloyl (HAMA), alginate, and fibrin hydrogels. ARPE-19 and hESC-RPE cells were seeded onto the hydrogels separately, and the ability of these supports to facilitate adherence, proliferation, and homogeneous distribution of differentiated hESC-RPE cells was investigated. Furthermore, the hydrogel's subretinal bio-compatibility was assessed in vivo.
    RESULTS: We showed that ARPE-19 and hESC-RPE cells adhered and proliferated only on the fibrin support. The monolayer formed when cells reached confluency, demonstrating the polygonal semblance, and revealing actin filaments that moved along the cytoplasm. The expression of tight junction proteins at cell interfaces on the 14th day of seeding demonstrated the barrier function of epithelial cells on polymeric surfaces and the interaction between cells. Moreover, the expression of proteins crucial for retinal functions and matrix production was positively affected by fibrin, with an increment of PEDF. Our in vivo investigation with fibrin hydrogels revealed high short-term subretinal biocompatibility.
    CONCLUSIONS: The research of stem cell-based cell therapy for retinal degenerative diseases is more complicated than that of cell lines. Our results showed that fibrin is a suitable scaffold for hESC-RPE transplantation, which could be a new grafting material for tissue engineering RPE cells.
    Keywords:  ARPE-19; hESC-RPE; hydrogel; retinal degenerative diseases; transplantation
    DOI:  https://doi.org/10.3390/brainsci12121620
  5. J Extracell Vesicles. 2022 Dec;11(12): e12295
      Age-related macular degeneration (AMD) is a leading cause of blindness. Vision loss is caused by the retinal pigment epithelium (RPE) and photoreceptors atrophy and/or retinal and choroidal angiogenesis. Here we use AMD patient-specific RPE cells with the Complement Factor H Y402H high-risk polymorphism to perform a comprehensive analysis of extracellular vesicles (EVs), their cargo and role in disease pathology. We show that AMD RPE is characterised by enhanced polarised EV secretion. Multi-omics analyses demonstrate that AMD RPE EVs carry RNA, proteins and lipids, which mediate key AMD features including oxidative stress, cytoskeletal dysfunction, angiogenesis and drusen accumulation. Moreover, AMD RPE EVs induce amyloid fibril formation, revealing their role in drusen formation. We demonstrate that exposure of control RPE to AMD RPE apical EVs leads to the acquisition of AMD features such as stress vacuoles, cytoskeletal destabilization and abnormalities in the morphology of the nucleus. Retinal organoid treatment with apical AMD RPE EVs leads to disrupted neuroepithelium and the appearance of cytoprotective alpha B crystallin immunopositive cells, with some co-expressing retinal progenitor cell markers Pax6/Vsx2, suggesting injury-induced regenerative pathways activation. These findings indicate that AMD RPE EVs are potent inducers of AMD phenotype in the neighbouring RPE and retinal cells.
    Keywords:  age-related macular degeneration; complement factor H; extracellular vesicles; human induced pluripotent stem cells; photoreceptors; retina; retinal pigment epithelium
    DOI:  https://doi.org/10.1002/jev2.12295
  6. Ophthalmol Sci. 2022 Dec;2(4): 100212
      Objective: The objective of the study was to reveal the presence of cellular interplay through extracellular vesicle (EV) microRNAs (miRs), to dampen the vicious cycle to degenerate human corneal endothelium (HCE) tissues.Design: Prospective, comparative, observational study.
    Methods: The miR levels in neonate-derived corneal tissues, in the aqueous humor (AqH) of bullous keratoplasty and cataract patients, as well as in the culture supernatant (CS) and EV of cultured human corneal endothelial cells (hCECs), were determined using 3D-Gene human miR chips and then validated using the real-time polymerase chain reaction. The extracellularly released miRs were profiled after the forced downregulation of cellular miR-34a, either by an miR-34a inhibitor or exposure to H2O2. The senescence-associated secretory phenotypes and mitochondrial membrane potential (MMP) were assessed to determine the functional features of the released miRs.
    Main Outcome Measures: Identification of functional miRs attenuating HCE degeneration.
    Results: The miRs in AqH were classified into 2 groups: expression in 1 group was significantly reduced in neonate-derived tissues, whereas that in the other group remained almost constant, independent of aging. The miR-34a and -29 families were typical in the former group, whereas miR-184 and -24-3p were typical in the latter. Additionally, a larger amount of the latter miRs was detected in AqH compared with those of the former miRs. There was also a greater abundance of miR-184 and -24-3p in hCECs, EV, and CS in fully mature CD44-/dull hCEC, leading to sufficient clinical tissue regenerative capacity in cell injection therapy. The repression of cellular miR-34a, either due to miR-34a inhibitors or exposure to oxidative stress, unexpectedly resulted in the elevated release of miR-184 and -24-3p. Secretions of VEGF, interleukin 6, monocyte chemotactic protein-1, and MMP were all repressed in both mature CD44-/dull and degenerated CD44+++ hCEC, transfected with an miR-184 mimic.
    Conclusions: The elevated release of miR-184 into AqH may constitute cellular interplay that prevents the aggravation of HCE degeneration induced by oxidative stress, thereby sustaining tissue homeostasis in HCE.
    Keywords:  AQP-1, aquaporin 1; AqH, aqueous humor; CS, culture supernatant; Corneal endothelium degeneration; ECD, endothelial cell density; ER, endoplasmic reticulum; EV, extracellular vesicle; Extracellular vesicle; HCE, human corneal endothelium; IL-6, interleukin 6; MCP-1, monocyte chemotactic protein-1; MMP, mitochondrial membrane potential; MiR-184; Mitochondria metabolic homeostasis; Oxidative stress; SASP, senescence-associated secretory phenotype; SLC4A11, solute carrier family 4 member 11; SP, subpopulation; hCEC, cultured human corneal endothelial cell; miR, microRNA
    DOI:  https://doi.org/10.1016/j.xops.2022.100212