Invest Ophthalmol Vis Sci. 2022 Sep 01. 63(10): 19
Purpose: Sirtuin1 (SIRT1) as a hot therapeutic target for oxidative stress-associated diseases that has been extensively studied. This study aimed to determine the changes in SIRT1 expression in particulate matter (PM)-induced corneal and conjunctival epithelial cell damage and explore potential drugs to reduce PM-associated ocular surface injury.
Methods: Immortalized human corneal epithelial cells (HCECs) and human conjunctival epithelial cells (HCjECs) were exposed to an ambient PM sample. Cytotoxicity was evaluated by water-soluble tetrazolium salt-8 assay. SIRT1 expression was measured by Western blot analysis. Reactive oxygen species (ROS) production, cell apoptosis, mitochondrial function, and cell senescence were assessed by using 2',7'-dichlorofluorescein diacetate assay, annexin V apoptosis assay, tetramethylrhodamine ethyl ester assay, and senescence β-galactosidase staining, respectively.
Results: PM-induced cytotoxicity of HCECs and HCjECs occurred in a dose-dependent manner. Increased ROS production, as well as decreased SIRT1 expression, were observed in HCECs and HCjECs after 200 µg/mL PM exposure. In addition, PM induced oxidative stress-mediated cellular damage, including cell apoptosis, mitochondrial damage, and cell senescence. Interestingly, SRT1720, a SIRT1 activator, increased SIRT1 expression and decreased ROS production and attenuated PM-induced cell damage in HCECs and HCjECs.
Conclusions: This study determined that SIRT1 was involved in PM-induced oxidative stress in HCECs and HCjECs and found that ROS overproduction may a key factor in PM-induced SIRT1 downregulation. The SIRT1 activator, SRT1720, can effectively upregulate SIRT1 expression and inhibit ROS production, thereby reversing PM-induced cell damage. This study provides a new potential target for clinical treatment of PM-associated ocular surface diseases.