bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2022–04–24
five papers selected by
Rajalekshmy “Raji” Shyam, Indiana University Bloomington



  1. J Cell Mol Med. 2022 Apr 23.
      Oxidative stress plays an important role in the ageing of the retina and in the pathogenesis of retinal diseases such as age-related macular degeneration (ARMD). Hydrogen peroxide is a reactive oxygen species generated by the photo-excited lipofuscin that accumulates during ageing in the retinal pigment epithelium (RPE), and the age-related accumulation of lipofuscin is associated with ARMD. Iron also accumulates with age in the RPE that may contribute to ARMD as an important source of oxidative stress. The aim of this work was to investigate the effects of L-Citrulline (CIT), a naturally occurring amino acid with known antioxidant properties, on oxidative stressed cultured RPE cells. Human RPE (ARPE-19) cells were exposed to hydrogen peroxide (H2 O2 ) or iron/ascorbate (I/A) for 4 h, either in the presence of CIT or after 24 h of pretreatment. Here, we show that supplementation with CIT protects ARPE-19 cells against H2 O2 and I/A. CIT improves cell metabolic activity, decreases ROS production, limits lipid peroxidation, reduces cell death and attenuates IL-8 secretion. Our study evidences that CIT is able to protect human RPE cells from oxidative damage and suggests potential protective effect for the treatment of retinal diseases associated with oxidative stress.
    Keywords:  ARPE-19 (human RPE cell line); citrulline; hydrogen peroxide; iron/ascorbate; oxidative stress
    DOI:  https://doi.org/10.1111/jcmm.17294
  2. Front Neurosci. 2022 ;16 852114
      SARM1 (sterile alpha and armadillo motif-containing protein) is a highly conserved Toll/IL-1 Receptor (TIR) adaptor with important roles in mediating immune responses. Studies in the brain have shown that SARM1 plays a role in induction of neuronal axon degeneration in response to a variety of injuries. We recently demonstrated that SARM1 is pro-degenerative in a genetic model of inherited retinopathy. This current study aimed to characterise the effect of SARM1 deletion in an alternative model of retinal degeneration (RD) in which the retinal pigment epithelium (RPE) fragments following administration of oxidising agent, sodium iodate (NaIO3), leading to subsequent photoreceptor cell death. Following administration of NaIO3, we observed no apparent difference in rate of loss of RPE integrity in SARM1 deficient mice compared to WT counterparts. However, despite no differences in RPE degeneration, photoreceptor cell number and retinal thickness were increased in Sarm1-/- mice compared to WT counterparts. This apparent protection of the photoreceptors in SARM1 deficient mice is supported by an observed decrease in pro-apoptotic caspase-3 in the photoreceptor layer of Sarm1-/- mice compared to WT. Together these data indicate a pro-degenerative role for SARM1 in the photoreceptors, but not in the RPE, in an oxidative stress induced model of retinal degeneration consistent with its known degenerative role in neurons in a range of neurodegenerative settings.
    Keywords:  SARM1; caspase-3; cell death; photoreceptors; retinal degeneration; sodium iodate
    DOI:  https://doi.org/10.3389/fnins.2022.852114
  3. Antioxidants (Basel). 2022 Apr 05. pii: 713. [Epub ahead of print]11(4):
      Age-related macular degeneration (AMD) is partially characterized by retinal pigment epithelial (RPE) cell dysfunction. This study focused on phagocytosis activity and its involvement in AMD. Phagocytic activity was analyzed by flow cytometry using porcine photoreceptor outer segment (POS) and fluorescent beads in basal and under oxidative stress condition induced by Fe-NTA in fifteen hiPSC-RPE cell lines (six controls, six atrophic AMD and three exudative AMD). Oxidative stress exposure inhibited phagocytosis in the same manner for control, atrophic AMD (AMDa) and exudative AMD (AMDe) cell lines. However, altered phagocytosis in basal condition in hiPSC-RPE AMDa/e was observed compared to control cell lines. Gene expression after 3 or 24 h of POS incubation was analyzed by RNA-Seq based transcriptomic profiling. Differential gene expression was observed by RNA seq after 3 and 24 h POS exposure. We have focused on the genes involved in mTOR/PI3K-AKT/MEK-ERK pathway. We investigated differences in gene expression by analyzing the expression levels and activity of the corresponding proteins by Western blot. We showed the involvement of three proteins essential for phagocytosis activity: fak, tuberin and rictor. These findings demonstrate that hiPSC-RPE AMDa/e cells have a typical disease phenotype characterized by alteration of the main function of RPE cells, phagocytosis activity.
    Keywords:  RNA-seq; age-related macular degeneration; atrophic AMD; exudative AMD; iPSC-RPE phagocytosis
    DOI:  https://doi.org/10.3390/antiox11040713
  4. Antioxidants (Basel). 2022 Mar 22. pii: 605. [Epub ahead of print]11(4):
      Primary cultures of retinal pigment epithelium (RPE) from human adult donors (haRPE) and induced pluripotent stem cell derived-RPE (iPSC-RPE) are valuable model systems for gaining mechanistic insight and for testing potential therapies for age-related macular degeneration (AMD). This study evaluated the treatment response of haRPE and iPSC-RPE to oxidative stress and potential therapeutics addressing mitochondrial defects. haRPE and iSPC-RPE were derived from donors with or without AMD. Mitochondrial function was measured after treatment with menadione, AICAR, or trehalose and the response to treatment was compared between cell models and by disease status. In a subset of samples, haRPE and iPSC-RPE were generated from the same human donor to make a side-by-side comparison of the two cell models' response to treatment. Disease-specific responses to all three treatments was observed in the haRPE. In contrast, iPSC-RPE had a similar response to all treatments irrespective of disease status. Analysis of haRPE and iPSC-RPE generated from the same human donor showed a similar response for donors without AMD, but there were significant differences in treatment response between cell models generated from AMD donors. These results support the use of iPSC-RPE and haRPE when investigating AMD mechanisms and new therapeutics but indicates that attention to experimental conditions is required.
    Keywords:  age-related macular degeneration; mitochondria; oxidative stress; retinal pigment epithelium
    DOI:  https://doi.org/10.3390/antiox11040605
  5. Bioengineered. 2022 Apr;13(4): 10362-10372
      Diabetic retinopathy is one of the most characteristic complications of diabetes mellitus, and pyroptosis plays acrucial role in the onset and development of diabetic retinopathy. Although microRNA-192 (miR-192) has been demonstrated to be involved in diabetic retinopathy progression, to the best of our knowledge, its potential and mechanism in cell pyroptosis in diabetic retinopathy have not been studied. The present study demonstrated that high glucose (HG) contributes to the pyroptosis of retinal pigment epithelial (RPE) cells in a dose-dependent manner. The results revealed that miR-192 was weakly expressed in HG-induced RPE cells. Furthermore, overexpression of miR-192 abrogated the role of HG in RPE cell pyroptosis. Based on the bioinformatics analysis, a dual-luciferase reporter assay, and an RNA pull-down assay, FTO α-ketoglutarate-dependent dioxygenase (FTO) was demonstrated to be a direct target of miR-192. Additionally, upregulation of FTO abolished the effects of miR-192 on RPE cells treated with HG. Nucleotide-binding domain leucine-rich repeat family protein 3 (NLRP3) inflammasome activation is vital for cell pyroptosis, and FTO functions as a pivotal modulator in the N6-methyladenosine modifications of various genes. Mechanistically, FTO enhanced NLRP3 expression by facilitating demethylation of NLRP3. In conclusion, the present results demonstrate that miR-192 represses RPE cell pyroptosis triggered by HG via regulation of the FTO/NLRP3 signaling pathway.
    Keywords:  MiR-192; diabetic retinopathy; fto; pyroptosis; retinal pigment epithelial cell
    DOI:  https://doi.org/10.1080/21655979.2022.2044734