bims-mideyd Biomed News
on Mitochondrial dysfunction in eye diseases
Issue of 2021–12–19
ten papers selected by
Rajalekshmy “Raji” Shyam, Indiana University Bloomington



  1. Cell Death Dis. 2021 Dec 11. 12(12): 1149
      Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by progressive optic nerve degeneration and retinal ganglion cell loss. Axonal transport deficits have been demonstrated to be the earliest crucial pathophysiological changes underlying axonal degeneration in glaucoma. Here, we explored the role of the tetraspanin superfamily member CD82 in an acute ocular hypertension model. We found a transient downregulation of CD82 after acute IOP elevation, with parallel emergence of axonal transport deficits. The overexpression of CD82 with an AAV2/9 vector in the mouse retina improved optic nerve axonal transport and ameliorated subsequent axon degeneration. Moreover, the CD82 overexpression stimulated optic nerve regeneration and restored vision in a mouse optic nerve crush model. CD82 exerted a protective effect through the upregulation of TRAF2, which is an E3 ubiquitin ligase, and activated mTORC1 through K63-linked ubiquitylation and intracellular repositioning of Raptor. Therefore, our study offers deeper insight into the tetraspanin superfamily and demonstrates a potential neuroprotective strategy in glaucoma treatment.
    DOI:  https://doi.org/10.1038/s41419-021-04445-6
  2. Oxid Med Cell Longev. 2021 ;2021 8028427
      Chronic oxidative stress eventually leads to protein aggregation in combination with impaired autophagy, which has been observed in age-related macular degeneration. We have previously shown an effective age-related macular degeneration disease model in mice with nuclear factor-erythroid 2-related factor-2 (NFE2L2) knockout. We have also shown pinosylvin, a polyphenol abundant in bark waste, to increase human retinal pigment epithelium cell viability in vitro. In this work, the effects of commercial natural pinosylvin extract, Retinari™, were studied on the electroretinogram, optical coherence tomogram, autophagic activity, antioxidant capacity, and inflammation markers. Wild-type and NFE2L2 knockout mice were raised until the age of 14.8 ± 3.8 months. They were fed with either regular or Retinari™ chow (141 ± 17.0 mg/kg/day of pinosylvin) for 10 weeks before the assays. Retinari™ treatment preserved significant retinal function with significantly preserved a- and b-wave amplitudes in the electroretinogram responses. Additionally, the treatment prevented thinning of the retina in the NFE2L2 knockout mice. The NFE2L2 knockout mice showed reduced ubiquitin-tagged protein accumulation in addition to local upregulation of complement factor H and antioxidant enzymes superoxide dismutase 1 and catalase. Therefore, the treatment in the NFE2L2 KO disease model led to reduced chronic oxidative stress and sustained retinal function and morphology. Our results demonstrate that pinosylvin supplementation could potentially lower the risk of age-related macular degeneration onset and slow down its progression.
    DOI:  https://doi.org/10.1155/2021/8028427
  3. Neural Regen Res. 2022 Jul;17(7): 1431-1439
      Glaucoma is one of the world's most frequent visual impairment causes and leads to selective damage to retinal ganglion cells and their axons. Despite glaucoma's most accepted risk factor is increased intraocular pressure (IOP), the mechanisms behind the disease have not been fully elucidated. To date, IOP lowering remains the gold standard; however, glaucoma patients may still lose vision regardless of effective IOP management. Therefore, the exclusive IOP control apparently is not enough to stop the disease progression, and developing new resources to protect the retina and optic nerve against glaucoma is a goal of vast clinical importance. Besides pharmacological treatments, environmental conditions have been shown to prevent neurodegeneration in the central nervous system. In this review, we discuss current concepts on key pathogenic mechanisms involved in glaucoma, the effect of enriched environment on these mechanisms in different experimental models, as well as recent evidence supporting the preventive and therapeutic effect of enriched environment exposure against experimental glaucomatous damage. Finally, we postulate that stimulating vision may become a non-invasive and rehabilitative therapy that could be eventually translated to the human disease, preventing glaucoma-induced terrible sequelae resulting in permanent visual disability.
    Keywords:  brain-derived neurotrophic factor; chondroitin sulfate; enriched environment; glaucoma; optic nerve axons; optic nerve glia; retinal ganglion cells; visual stimulation
    DOI:  https://doi.org/10.4103/1673-5374.330594
  4. Nat Commun. 2021 Dec 15. 12(1): 7293
      Age-related Macular Degeneration (AMD), a blinding eye disease, is characterized by pathological protein- and lipid-rich drusen deposits underneath the retinal pigment epithelium (RPE) and atrophy of the RPE monolayer in advanced disease stages - leading to photoreceptor cell death and vision loss. Currently, there are no drugs that stop drusen formation or RPE atrophy in AMD. Here we provide an iPSC-RPE AMD model that recapitulates drusen and RPE atrophy. Drusen deposition is dependent on AMD-risk-allele CFH(H/H) and anaphylatoxin triggered alternate complement signaling via the activation of NF-κB and downregulation of autophagy pathways. Through high-throughput screening we identify two drugs, L-745,870, a dopamine receptor antagonist, and aminocaproic acid, a protease inhibitor that reduce drusen deposits and restore RPE epithelial phenotype in anaphylatoxin challenged iPSC-RPE with or without the CFH(H/H) genotype. This comprehensive iPSC-RPE model replicates key AMD phenotypes, provides molecular insight into the role of CFH(H/H) risk-allele in AMD, and discovers two candidate drugs to treat AMD.
    DOI:  https://doi.org/10.1038/s41467-021-27488-x
  5. Cell Death Discov. 2021 Dec 15. 7(1): 394
      Retinal ganglion cell (RGC) loss is a pathologic feature common to several retinopathies associated to optic nerve damage, leading to visual loss and blindness. Although several scientific efforts have been spent to understand the molecular and cellular changes occurring in retinal degeneration, an effective therapy to counteract the retinal damage is still not available. Here we show that eyeballs, enucleated with the concomitant optic nerve cut (ONC), when kept in PBS for 24 h showed retinal and optic nerve degeneration. Examining retinas and optic nerves at different time points in a temporal window of 24 h, we found a thinning of some retinal layers especially RGC's layer, observing a powerful RGC loss after 24 h correlated with an apoptotic, MAPKs and degradative pathways dysfunctions. Specifically, we detected a time-dependent increase of Caspase-3, -9 and pro-apoptotic marker levels, associated with a strong reduction of BRN3A and NeuN levels. Importantly, a powerful activation of JNK, c-Jun, and ERK signaling (MAPKs) were observed, correlated with a significant augmented SUMO-1 and UBC9 protein levels. The degradation signaling pathways was also altered, causing a significant decrease of ubiquitination level and an increased LC3B activation. Notably, it was also detected an augmented Tau protein level. Curcumin, a powerful antioxidant natural compound, prevented the alterations of apoptotic cascade, MAPKs, and SUMO-1 pathways and the degradation system, preserving the RGC survival and the retinal layer thickness. This ex vivo retinal degeneration model could be a useful method to study, in a short time window, the effect of neuroprotective tools like curcumin that could represent a potential treatment to contrast retinal cell death.
    DOI:  https://doi.org/10.1038/s41420-021-00760-1
  6. Exp Eye Res. 2021 Dec 09. pii: S0014-4835(21)00454-1. [Epub ahead of print]214 108888
      The trabecular meshwork (TM) is the leading site of aqueous humor outflow in the eye and plays a critical role in maintaining normal intraocular pressure. When the TM fails to maintain normal intraocular pressure, glaucoma may develop. Mitochondrial damage has previously been found in glaucomatous TM cells; however, the precise metabolic activity of glaucomatous TM cells has yet to be quantitatively assessed. Using dexamethasone (Dex) treated primary human TM cells to model glaucomatous TM cells, we measure the respiratory and glycolytic activity of Dex-treated TM cells with an extracellular flux assay. We found that Dex-treated TM cells had quantifiably altered metabolic profiles, including increased spare respiratory capacity and ATP production rate from oxidative phosphorylation. Therefore, we propose that reversing or preventing these metabolic changes may represent an avenue for future research.
    Keywords:  Mitochondria; Myocilin; Primary open angle glaucoma; Trabecular meshwork
    DOI:  https://doi.org/10.1016/j.exer.2021.108888
  7. Exp Eye Res. 2021 Dec 12. pii: S0014-4835(21)00461-9. [Epub ahead of print] 108895
      Cathepsin S (Ctss) is a protease that is proinflammatory on epithelial cells. The purpose of this study was to investigate the role of Ctss in age-related dry eye disease. Ctss-/- mice [in a C57BL/6 (B6) background] of different ages were compared to B6 mice. Ctss activity in tears and lacrimal gland (LG) lysates was measured. The corneal barrier function was investigated in naïve mice or after topical administration of Ctss eye drops 5X/day for two days. Eyes were collected, and conjunctival goblet cell density was measured in PAS-stained sections. Immunoreactivity of the tight junction proteins, ZO-1 and occludin, was investigated in primary human cultured corneal epithelial cells (HCEC) without or with Ctss, with or without a Ctss inhibitor. A significant increase in Ctss activity was observed in the tears and LG lysates in aged B6 compared to young mice. This was accompanied by higher Ctss transcripts and protein expression in LG and spleen. Compared to B6, 12 and 24-month-old Ctss-/- mice did not display age-related corneal barrier disruption and goblet cell loss. Treatment of HCEC with Ctss for 48 hours disrupted occludin and ZO-1 immunoreactivity compared to control cells. This was prevented by the Ctss inhibitor LY3000328 or Ctss-heat inactivation. Topical reconstitution of Ctss in Ctss-/- mice for two days disrupted corneal barrier function. Aging on the ocular surface is accompanied by increased expression and activity of the protease Ctss. Our results suggest that cathepsin S modulation might be a novel target for age-related dry eye disease.
    Keywords:  Aging; Cathepsin S; Corneal barrier; Dry eye; Goblet cells; Inflammaging; Tight junction proteins
    DOI:  https://doi.org/10.1016/j.exer.2021.108895
  8. FASEB J. 2022 Jan;36(1): e22062
      Mitochondrial dysfunction or loss of homeostasis is a central hallmark of many human diseases. Mitochondrial homeostasis is mediated by multiple quality control mechanisms including mitophagy, a form of selective autophagy that recycles terminally ill or dysfunctional mitochondria in order to preserve mitochondrial integrity. Our prior studies have shown that members of the insulin-like growth factor (IGF) family localize to the mitochondria and may play important roles in mediating mitochondrial health in the corneal epithelium, an integral tissue that is required for the maintenance of optical transparency and vision. Importantly, the IGF-binding protein-3, IGFBP-3, is secreted by corneal epithelial cells in response to stress and functions to mediate intracellular receptor trafficking in this cell type. In this study, we demonstrate a novel role for IGFBP-3 in mitochondrial homeostasis through regulation of the short isoform (s)BNIP3L/NIX mitophagy receptor in corneal epithelial cells and extend this finding to non-ocular epithelial cells. We further show that IGFBP-3-mediated control of mitochondrial homeostasis is associated with alterations in lamellar cristae morphology and mitochondrial dynamics. Interestingly, both loss and gain of function of IGFBP-3 drive an increase in mitochondrial respiration. This increase in respiration is associated with nuclear accumulation of IGFBP-3. Taken together, these findings support a novel role for IGFBP-3 as a key mediator of mitochondrial health in mucosal epithelia through the regulation of mitophagy and mitochondrial morphology.
    Keywords:  autophagy; insulin-like growth factor type 1 receptor; mTOR; metabolism; mitochondria
    DOI:  https://doi.org/10.1096/fj.202100710RR
  9. Aging (Albany NY). 2021 Dec 17. 13(undefined):
      Autophagy is an important cellular mechanism for maintaining cellular homeostasis, and its impairment correlates highly with age and age-related diseases. Retinal pigment epithelial (RPE) cells of the eye represent a crucial model for studying autophagy, as RPE functions and integrity are highly dependent on an efficient autophagic process. Cysteinyl leukotriene receptor 1 (CysLTR1) acts in immunoregulation and cellular stress responses and is a potential regulator of basal and adaptive autophagy. As basal autophagy is a dynamic process, the aim of this study was to define the role of CysLTR1 in autophagy regulation in a chronobiologic context using the ARPE-19 human RPE cell line. Effects of CysLTR1 inhibition on basal autophagic activity were analyzed at inactive/low and high lysosomal degradation activity with the antagonists zafirlukast (ZTK) and montelukast (MTK) at a dosage of 100 nM for 3 hours. Abundances of the autophagy markers LC3-II and SQSTM1 and LC3B particles were analyzed in the absence and presence of lysosomal inhibitors using western blot analysis and immunofluorescence microscopy. CysLTR1 antagonization revealed a biphasic effect of CysLTR1 on autophagosome formation and lysosomal degradation that depended on the autophagic activity of cells at treatment initiation. ZTK and MTK affected lysosomal degradation, but only ZTK regulated autophagosome formation. In addition, dexamethasone treatment and serum shock induced autophagy, which was repressed by CysLTR1 antagonization. As a newly identified autophagy modulator, CysLTR1 appears to be a key player in the chronobiological regulation of basal autophagy and adaptive autophagy in RPE cells.
    Keywords:  CysLTR1; LC3B; autophagy; lysosomal degradation; retinal pigment epithelial cells
    DOI:  https://doi.org/10.18632/aging.203787
  10. Hum Mol Genet. 2021 Dec 15. pii: ddab359. [Epub ahead of print]
      Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease caused by a splicing mutation in the gene encoding Elongator complex protein 1 (ELP1, also known as IKBKAP). This mutation results in tissue-specific skipping of exon 20 with a corresponding reduction of ELP1 protein, predominantly in the central and peripheral nervous system. Although FD patients have a complex neurological phenotype caused by continuous depletion of sensory and autonomic neurons, progressive visual decline leading to blindness is one of the most problematic aspects of the disease, as it severely affects their quality of life. To better understand the disease mechanism as well as to test the in vivo efficacy of targeted therapies for FD, we have recently generated a novel phenotypic mouse model, TgFD9; IkbkapΔ20/flox. This mouse exhibits most of the clinical features of the disease and accurately recapitulates the tissue-specific splicing defect observed in FD patients. Driven by the dire need to develop therapies targeting retinal degeneration in FD, herein, we comprehensively characterized the progression of the retinal phenotype in this mouse, and we demonstrated that it is possible to correct ELP1 splicing defect in the retina using the splicing modulator compound (SMC) BPN-15477.
    DOI:  https://doi.org/10.1093/hmg/ddab359