bims-micpro Biomed News
on Discovery and characterization of microproteins
Issue of 2021–11–28
two papers selected by
Thomas Farid Martínez, University of California, Irvine



  1. Biomolecules. 2021 Nov 11. pii: 1673. [Epub ahead of print]11(11):
      Ribosome profiling reveals the translational dynamics of mRNAs by capturing a ribosomal footprint snapshot. Growing evidence shows that several long non-coding RNAs (lncRNAs) contain small open reading frames (smORFs) that are translated into functional peptides. The difficulty in identifying bona-fide translated smORFs is a constant challenge in experimental and bioinformatics fields due to their unconventional characteristics. This motivated us to isolate human adipose-derived stem cells (hASC) from adipose tissue and perform a ribosome profiling followed by bioinformatics analysis of transcriptome, translatome, and ribosome-protected fragments of lncRNAs. Here, we demonstrated that 222 lncRNAs were associated with the translational machinery in hASC, including the already demonstrated lncRNAs coding microproteins. The ribosomal occupancy of some transcripts was consistent with the translation of smORFs. In conclusion, we were able to identify a subset of 15 lncRNAs containing 35 smORFs that likely encode functional microproteins, including four previously demonstrated smORF-derived microproteins, suggesting a possible dual role of these lncRNAs in hASC self-renewal.
    Keywords:  lncRNA; microprotein; ribosome; smORF; stem cells; translation
    DOI:  https://doi.org/10.3390/biom11111673
  2. Cells. 2021 Nov 02. pii: 2983. [Epub ahead of print]10(11):
      It is recognized that a large proportion of eukaryotic RNAs and proteins is not produced from conventional genes but from short and alternative (alt) open reading frames (ORFs) that are not captured by gene prediction programs. Here we present an in silico prediction of altORFs by applying several selecting filters based on evolutionary conservation and annotations of previously characterized altORF peptides. Our work was performed in the Bithorax-complex (BX-C), which was one of the first genomic regions described to contain long non-coding RNAs in Drosophila. We showed that several altORFs could be predicted from coding and non-coding sequences of BX-C. In addition, the selected altORFs encode for proteins that contain several interesting molecular features, such as the presence of transmembrane helices or a general propensity to be rich in short interaction motifs. Of particular interest, one altORF encodes for a protein that contains a peptide sequence found in specific isoforms of two Drosophila Hox proteins. Our work thus suggests that several altORF proteins could be produced from a particular genomic region known for its critical role during Drosophila embryonic development. The molecular signatures of these altORF proteins further suggests that several of them could make numerous protein-protein interactions and be of functional importance in vivo.
    Keywords:  ELM; SLiM; altORF; lncRNA; smORF
    DOI:  https://doi.org/10.3390/cells10112983