bims-micpro Biomed News
on Discovery and characterization of microproteins
Issue of 2021‒04‒25
four papers selected by
Thomas Martinez
Salk Institute for Biological Studies


  1. Genome Biol. 2021 Apr 23. 22(1): 118
      BACKGROUND: Recent genome-wide studies of many species reveal the existence of a myriad of RNAs differing in size, coding potential and function. Among these are the long non-coding RNAs, some of them producing functional small peptides via the translation of short ORFs. It now appears that any kind of RNA presumably has a potential to encode small peptides. Accordingly, our team recently discovered that plant primary transcripts of microRNAs (pri-miRs) produce small regulatory peptides (miPEPs) involved in auto-regulatory feedback loops enhancing their cognate microRNA expression which in turn controls plant development. Here we investigate whether this regulatory feedback loop is present in Drosophila melanogaster.RESULTS: We perform a survey of ribosome profiling data and reveal that many pri-miRNAs exhibit ribosome translation marks. Focusing on miR-8, we show that pri-miR-8 can produce a miPEP-8. Functional assays performed in Drosophila reveal that miPEP-8 affects development when overexpressed or knocked down. Combining genetic and molecular approaches as well as genome-wide transcriptomic analyses, we show that miR-8 expression is independent of miPEP-8 activity and that miPEP-8 acts in parallel to miR-8 to regulate the expression of hundreds of genes.
    CONCLUSION: Taken together, these results reveal that several Drosophila pri-miRs exhibit translation potential. Contrasting with the mechanism described in plants, these data shed light on the function of yet undescribed primary-microRNA-encoded peptides in Drosophila and their regulatory potential on genome expression.
    Keywords:  Drosophila; Small peptides; lncRNA; miPEP; miR-8; sORF
    DOI:  https://doi.org/10.1186/s13059-021-02345-8
  2. Proc Natl Acad Sci U S A. 2021 Apr 13. pii: e2001897118. [Epub ahead of print]118(15):
      Even in well-characterized genomes, many transcripts are considered noncoding RNAs (ncRNAs) simply due to the absence of large open reading frames (ORFs). However, it is now becoming clear that many small ORFs (smORFs) produce peptides with important biological functions. In the process of characterizing the ribosome-bound transcriptome of an important cell type of the seminal fluid-producing accessory gland of Drosophila melanogaster, we detected an RNA, previously thought to be noncoding, called male-specific abdominal (msa). Notably, msa is nested in the HOX gene cluster of the Bithorax complex and is known to contain a micro-RNA within one of its introns. We find that this RNA encodes a "micropeptide" (9 or 20 amino acids, MSAmiP) that is expressed exclusively in the secondary cells of the male accessory gland, where it seems to accumulate in nuclei. Importantly, loss of function of this micropeptide causes defects in sperm competition. In addition to bringing insights into the biology of a rare cell type, this work underlines the importance of small peptides, a class of molecules that is now emerging as important actors in complex biological processes.
    Keywords:  Drosophila; accessory gland; postmating response; reproduction; smORF peptide
    DOI:  https://doi.org/10.1073/pnas.2001897118
  3. Plant Physiol. 2019 Aug 29. 181(1): 367-380
      Recent applications of translational control in Arabidopsis (Arabidopsis thaliana) highlight the potential power of manipulating mRNA translation for crop improvement. However, to what extent translational regulation is conserved between Arabidopsis and other species is largely unknown, and the translatome of most crops remains poorly studied. Here, we combined de novo transcriptome assembly and ribosome profiling to study global mRNA translation in tomato (Solanum lycopersicum) roots. Exploiting features corresponding to active translation, we discovered widespread unannotated translation events, including 1,329 upstream open reading frames (uORFs) within the 5' untranslated regions of annotated coding genes and 354 small ORFs (sORFs) among unannotated transcripts. uORFs may repress translation of their downstream main ORFs, whereas sORFs may encode signaling peptides. Besides evolutionarily conserved sORFs, we uncovered 96 Solanaceae-specific sORFs, revealing the importance of studying translatomes directly in crops. Proteomic analysis confirmed that some of the unannotated ORFs generate stable proteins in planta. In addition to defining the translatome, our results reveal the global regulation by uORFs and microRNAs. Despite diverging over 100 million years ago, many translational features are well conserved between Arabidopsis and tomato. Thus, our approach provides a high-throughput method to discover unannotated ORFs, elucidates evolutionarily conserved and unique translational features, and identifies regulatory mechanisms hidden in a crop genome.
    DOI:  https://doi.org/10.1104/pp.19.00541
  4. Neuron. 2021 Apr 13. pii: S0896-6273(21)00226-9. [Epub ahead of print]
      Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by the presence of intranuclear inclusions of unknown origin. NIID is caused by an expansion of GGC repeats in the 5' UTR of the NOTCH2NLC (N2C) gene. We found that these repeats are embedded in a small upstream open reading frame (uORF) (uN2C), resulting in their translation into a polyglycine-containing protein, uN2CpolyG. This protein accumulates in intranuclear inclusions in cell and mouse models and in tissue samples of individuals with NIID. Furthermore, expression of uN2CpolyG in mice leads to locomotor alterations, neuronal cell loss, and premature death of the animals. These results suggest that translation of expanded GGC repeats into a novel and pathogenic polyglycine-containing protein underlies the presence of intranuclear inclusions and neurodegeneration in NIID.
    Keywords:  RAN translation; genetic diseases; neurodegeneration; polyG; polyglycine; trinucleotide repeat disorder
    DOI:  https://doi.org/10.1016/j.neuron.2021.03.038