Int J Mol Sci. 2025 May 21. pii: 4951. [Epub ahead of print]26(10):
Studying the cell cycle is essential for understanding the molecular mechanisms that regulate cell division, growth, and differentiation in living organisms. However, mitosis constitutes only a brief phase of the overall cell cycle, making its analysis challenging in asynchronous cell populations due to its transient and dynamic nature. Cell synchronization methods help to enrich populations at specific cell cycle stages, including mitosis, typically by using chemical inhibitors to arrest cells at defined checkpoints. However, many existing protocols rely on combinations of inhibitors that interfere with normal mitotic progression, disrupting dynamics and causing side effects such as chromosome non-disjunction or lagging chromosomes, which limit their applicability. In this study, we present an RO3306 block-and-release strategy to selectively enrich cell populations at defined mitotic stages without compromising cell viability or disrupting their progression to mitotic exit. This approach provides a reliable method for studying mitotic events with high temporal resolution. Furthermore, by preserving mitotic integrity, it offers a valuable framework for investigating the molecular mechanisms of cell division and the processes driving genomic instability in human cells.
Keywords: RO3306; cell cycle; cell division; mitosis; synchronization