Cancers (Basel). 2022 Jan 31. pii: 738. [Epub ahead of print]14(3):
Systemic mastocytosis (SM) is due to the pathologic accumulation of neoplastic mast cells in one or more extracutaneous organ(s). Although midostaurin, a multikinase inhibitor active against both wild-type and D816V-mutated KIT, improves organ damage and symptoms, a proportion of patients relapse or have resistant disease. It is well known that Aurora kinase A (AKA) over-expression promotes tumorigenesis, but its role in the pathogenesis of systemic mastocytosis (SM) has not yet been investigated. Evidence from the literature suggests that AKA may confer cancer cell chemo-resistance, inhibit p53, and enhance Polo-like kinase 1 (Plk1), CDK1, and cyclin B1 to promote cell cycle progression. In this study, we aimed to investigate the pathogenetic role of AKA and Plk1 in the advanced forms of SM. We demonstrate here, for the first time, that SM cell lines display hyper-phosphorylated AKA and Plk1. Danusertib (Aurora kinase inhibitor) and volasertib (Plk1 inhibitor) inhibited growth and induced apoptotic cell death in HMC-1.1 and -1.2 cells. Their growth-inhibitory effects were associated with cell cycle arrest and the activation of apoptosis. Cell cycle arrest was associated with increased levels of phospho-Wee1. Wee1 inhibition by MK1775 after 24 h treatment with danusertib or volasertib, when cells were arrested in G2 phase and Wee1, was overexpressed and hyper-activated, resulting in a significantly higher rate of apoptosis than that obtained from concomitant treatment with danusertib or volasertib + MK1775 for 48 h. In conclusion, Plk1 and AKA, alone or together with Wee1, are attractive therapeutic targets in neoplastic MCs. Repurposing Plk1 or AKA ± Wee1 inhibitors in advanced clinical development for other indications is a therapeutic strategy worthy of being explored, in order to improve the outcome of patients with advanced SM.
Keywords: Aurora kinase A; Polo-like kinase 1; WEE1; systemic mastocytosis